
Gene Golub SIAM Summer School 2013
Function of Matrices

2013 Summer
Taught by Prof. Nicholas J. Higham

Notes taken by Zhengbo Zhou

May 20, 2023

Contents

1 History and Definitions 3
1.1 Definition via Jordan canonical form . 3
1.2 Definition via Interpolation . 4
1.3 Definition via Cauchy Integral Formula . 5
1.4 Defintion via Schwerdtfeger’s formula . 5
1.5 Equivalence of Definition . 5
1.6 Primary and Nonprimary Functions . 5
1.7 Principal Logarithm, root and power . 7

2 Application 7
2.1 Toolbox of Matrix Functions . 7
2.2 Linear Constant Coefficient ODE . 7
2.3 Application to Complex Networks . 8
2.4 The Average Eye . 8
2.5 Random Multivariate Samples in Statistics . 8

3 Properties 8
3.1 Function of Triangular Matrices . 9
3.2 Diagonalizable Matrices . 10

4 Fréchet Derivative and Condition Number 10
4.1 Condition Number . 11
4.2 Computing Lf . 11
4.3 Condition Estimation . 12

5 Problem Classification 13
5.1 Small/Medium Scale Problem . 13
5.2 Large Scale f(A)b problem . 13
5.3 Accuracy Requirement . 13

6 Methods for f(A) 14
6.1 Taylor Series . 14
6.2 Padé Approximation . 14
6.3 Similarity Transformations . 14
6.4 Block Diagonalization . 15
6.5 Parlett’s Recurrence . 15
6.6 Block Parlett Recurrence . 15
6.7 Schur-Parlett Algorithm . 16
6.8 Björck & Hammarling Method . 16
6.9 Matrix Sign Function . 17

1

6.10 Newton’s Method for Square Root . 17
6.11 Convergence Analysis of Newton’s Method . 18
6.12 Stability of Newton Iteration . 19
6.13 More Iterations for Sign Function . 20

7 Methods for f(A)b 20
7.1 A1/2b via contour integration . 20
7.2 Aαb via binomial expansion . 20
7.3 Aαb via ODE IVP . 21
7.4 Compute eAb . 21

A Supplimentary 25
A.1 Figure 1 . 25
A.2 Proof in Section 6.12.1 . 25

2

1 HISTORY AND DEFINITIONS

1 History and Definitions

The matrix algebra arised by Cayley and Sylvester.

• Matrix algebra developed by Arthur Cayley, FRS (1821–1895) in his paper “Memoir on the Theory
of Matrix” (1858).

• Cayley considered matrix square root is his 1858 memoir.

• The term “matrix” coined in 1850 by James Joseph Sylvester, FRS (1814–1897).

• Leguerre (1867) defines the matrix exponential via power series.

We can define the matrix function by substitution. Suppose we want to define f : Cn×n → Cn×n, but
not elementwise. Given f(t), we can define f(A) by substituting A for t:

f(t) =
1 + t2

1− t
⇒ f(A) = (I −A)−1(I +A2),

log(1 + x) = x− x2/2 + x3/3− x4/4 + · · · , |x | < 1

⇒ log(I +A) = A−A2/2 +A3/3−A4/4 + · · · , ρ(A) < 1,

where ρ(A) is the spectral radius of A (ρ(A) = max{|λ | : Ax = λx, ∀x ∈ Cn}). However, we want a more
general definition that works for arbitrary f and arbitrary A.

1.1 Definition via Jordan canonical form

We can reduce any A ∈ Cn×n into Jordan canonical form (JCF):

A = ZJZ−1, J = diag(J1, . . . , Jp), Jk = s


λk 1

. . .
. . .

. . . 1
λk

 ∈ Cmk×mk , (1)

where Z is nonsingular and m1 + · · ·+mp = n. Denote by

• λ1, . . . , λs the distinct eigenvalues of A,

• ni is the order of the largest Jordan block in which λi appears, which is called the index of λi.

We say the function f is defined on the spectrum of A if the values

f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s,

exist.

▶ Definition 1.1 (Define via Jordan Canonical Form). Let f be defined on the spectrum of A ∈ Cn×n

and let A have the JCF (1). Then
f(A) := Zf(J)Z−1

where f(J) = diag(f(J1), . . . , f(Jp)) and

f (Jk) :=


f (λk) f ′ (λk) · · · f(mk−1)(λk)

(mk−1)!

f (λk)
. . .

...
. . . f ′ (λk)

f (λk)


It is obvious that we require some differentiability of f and it depends on the Jordan structure. If A

is diagonalizable, there is no requirement on the differentiability of f . Conversely, if A has a large Jordan
block, then lots of derivatives are required. Also, from the definition, we see that we actually don’t need
the underlying function f to be smooth at all, since we only need the function value at λi.

3

1 HISTORY AND DEFINITIONS 1.2 Definition via Interpolation

1.1.1 “Deriving” the formula for f(Jk)

Write Jk = λkI + Ek ∈ Cmk×mk . For mk = 3, we have

Ek =

0 1 0
0 0 1
0 0 0

 , E2
k =

0 0 1
0 0 0
0 0 0

 , E3
k = 0.

Assuming f has Taylor expansion, then

f(t) = f(λk) + f ′(λk)(t− λk) + · · ·+
f (j)(λk)(t− λk)

j

j!
+ · · · ,

then

f(Jk) = f(λk)I + f ′(λk)Ek + · · ·+
f (mk−1)(λk)E

mk−1
k

(mk − 1)!
,

which is exactly the expression of f(Jk).

1.2 Definition via Interpolation

For A ∈ Cn×n, the following definition is studied by Sylvester (1886, distinct eigenvalues) and Buckheim
(1886, general eigenvalues).

▶ Definition 1.2 (Define via Hermite Interpolation). Given A ∈ Cn×n which has s distinct eigenvalues
λ1, . . . , λs and ni is the index of λi. Then f(A) = p(A) where p is the unique Hermite interpolating
polynomial of degree less than

∑s
i=1 ni satisfying: for each eigenvalue λk,

p(j)(λk) = f (j)(λk), j = 0, . . . , nk − 1.

▶ Example 1.3. Let f(t) = t1/2, A =

[
2 2
1 3

]
and λ(A) = {1, 4}. Then taking the positive roots, we

have

r(t) = f(1)
t− 4

1− 4
+ f(4)

t− 1

4− 1
=

1

3
(t+ 2),

which gives

A1/2 = r(A) =
1

3
(A+ 2I) =

1

3

[
4 2
1 5

]
Note. This definition gives a unique polynomial to define f(A). Suppose we impose further interpolation
conditions which may have nothing todo with the eigenvalues, then we gain a higher degree polynomial
but it still interpolates the eigenvalues and it still gives the same result.

For example, suppose we interpolates not only f(1) = 1 and f(4) = 2, but also f(−1) = 5. Then we
have

r(t) =
(t− 4)(t+ 1)

−6
+

2(t− 1)(t+ 1)

15
+

(t− 1)(t− 4)

2
,

and we can define

r(A) =
(A− 4I)(A+ I)

−6
+

2(A− I)(A+ I)

15
+

(A− I)(A− 4I)

2
=

1

3

[
4 2
1 5

]
which is exactly the same as using only 2 interpolating data. Further interpolating conditions wouldn’t
change the resul, this can be useful if we don’t know the Jordan form. For example, we can look for the
worst case Jordan form and get the interpolating polynomial using lots of data points where some of
them my not necessary, but we will eventually get the same result.

The following are properties of matrix function that can be seen by using the definition by interpolation.

• f(A) is a polynomial in A, but the polynomial depends on A.

• f(A) commutes with A, i.e. Af(A) = f(A)A.

• f(AT) = (f(A))T . However, f(A∗) ̸= (f(A))∗ in general.

4

1 HISTORY AND DEFINITIONS 1.3 Definition via Cauchy Integral Formula

The usual Cayley-Hamilton Theorem states

p(t) = det(tI −A) implies p(A) = 0.

A generalized version of the Cayley-Hamilton theorem is

▶ Theorem 1.4 (Cayley, 1857). If A,B ∈ Cn×n, AB = BA, and f(x, y) = det(xA − yB), then
f(B,A) = 0.

Using the Cayley-Hamilton theorem, An can be expressed as a linear combination of lower powers of
A: An =

∑n−1
k=0 ckA

k. Using this relation recursively, any power series collapses to a polynomial. For

example, eA =
∑∞

k=0 A
k/k! =

∑n−1
k=0 dkA

k where dk may depends on A.

1.3 Definition via Cauchy Integral Formula

▶ Definition 1.5 (Define via Cauchy Integral Formula). For A ∈ Cn×n,

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1 dz,

where f is analytic on and inside a closed contour Γ that enclose λ(A).

This definition is useful computationally. Suppose we would like to compute f(A)b for A is large and
sparse, then

f(A)b =
1

2πi

∫
Γ

f(z)(zI −A)−1b dz.

As long as we are able to solve (zI −A)−1b which is a linear system with shifted A, then we are able to
do quadrature here.

1.4 Defintion via Schwerdtfeger’s formula

▶ Definition 1.6 (Schwerdtfeger, 1938). For A with distinct eigenvalues λ1, . . . , λs with indices ni,

f(A) =

s∑
i=1

Ai

ni−1∑
j=0

f (j)(λi)

j!
(A− λiI)

j =

s∑
i=1

ni−1∑
j=0

f (j)(λi)Zij ,

where Ai are Frobenius covariants and Zij depends on A but not f .

1.5 Equivalence of Definition

▶ Theorem 1.7. The four definitions are equivalent, modulo analyticity assumption for the Cauchy
definition.

▶ Remark.

• Interpolation: For basic properties such as A and f(A) commute.

• JCF: Solving matrix equations, e.g. X2 = A, eX = A and W eW = A where W is the Lambert W
function.

• For computation, there exists methods that specific to particular f and A.

1.6 Primary and Nonprimary Functions

1.6.1 Root Oddities

Notice that identity matrix has strange roots

• B2
n = In where

B4 =


1 1 1 1
0 −1 −2 −3
0 0 1 3
0 0 0 −1

 .

This arises in backward differentiation formula solvers for ODEs.

5

1 HISTORY AND DEFINITIONS 1.6 Primary and Nonprimary Functions

• Turnbull (1927): A3
n = In, where

A4 =


−1 1 −1 1
−3 2 −1 0
−3 1 0 0
1 0 0 0

 .

• C2
n = In, where

Cn = 2−3/2


1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

 .

1.6.2 Nonprimary Matrix Functions

Consider the Jordan form definition 1.1. However, for example f(t) = t1/2, we could take different square
root (positive and negative square root) for the same eigenvalues (but different Jordan blocks). Formally,
if A is derogatory, and a different branch of f is taken in the two different Jordan blocks for λ, we obtain
a nonprimary matrix function for A. For example,

I2 =

[
1 0
0 1

]2
=

[
−1 0
0 −1

]2
, primary

=

[
1 0
0 −1

]2
=

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]2
, non-primary.

Primary matrix functions are expressible as a polynomial in A, while nonprimary ones are not.
Therefore the above three examples are all nonprimary matrix square roots of I2.

Sometimes, the nonprimary function are interested. For example, we would like to find the square
root of rotations G(θ) where

G(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

Apparently, G(θ/2) is a natural square root of G(θ). However, for θ = π,

G(π) =

[
−1 0
0 −1

]
, G(π/2) =

[
0 1
0 −1

]
,

which implies G(π/2) is a nonprimary square root of G(π).
Sometimes, the family of all nonprimary matrix functions can be written explicitly. For example, we

would like to find a matrix X such that

X2 = A =

1 1 0
0 1 0
0 0 1

 .

A solution is

X =

1 1/2 0
0 1 0
0 0 1

 .

In fact, all square roots of A are given by

Y = ±U

1 1/2 0
0 1 0
0 0 −1

U−1, U =

a b d
0 a 0
0 e c


where a, b, c, d and e are any numbers that make U nonsingular.

6

2 APPLICATION 1.7 Principal Logarithm, root and power

1.7 Principal Logarithm, root and power

Notice that suppose X is a solution of eX = A, then X + 2απiI for all α ∈ Z is a solution of eX = A.
Therefore, we need to make a choice on the solutions.

Let A ∈ Cn×n have no eigenvalues on R−,

▶ Definition 1.8 (Principal Log). X = log(A) denotes the unique X such that

• eX = A,

• −π < Im(λ(X)) < π.

▶ Definition 1.9 (Principal pth root). For integer p > 0, X = A1/p is the unique X such that

• Xp = A,

• −π/p < arg(λ(X)) < π/p.

▶ Definition 1.10 (Principal power). For s ∈ R, As = es logA, where logA is the principal logarithm.
It also have the integral representation:

As =
sin(sπ)

sπ
A

∫ ∞

0

(t1/sI +A)−1 dt, s ∈ (0, 1).

2 Application

2.1 Toolbox of Matrix Functions

In software, we want to be able to evaluate interesting f at matrix arguments as well as scalar arguments.
For example, trigonometric matrix functions, as well as matrix roots. For the second order differential
equation,

d2y

dt2
+Ay = 0, y(0) = y0, y′(0) = y′0

has solution
y(t) = cos(

√
At)y0 + (

√
A)−1 sin(

√
At)y′0,

where
√
A denotes any square root of A. On the other hand, the differential equation can be convert to a

first order system and solved using the exponential:[
y′

y

]
= exp

([
0 −tA
tIn 0

])[
y′0
y0

]
.

MATLAB has several preinstalled functions that can take matrix as input, e.g. funm, expm, logm and
sqrtm.

2.2 Linear Constant Coefficient ODE

In nuclear magnetic resonance (NMR) spectroscopy Solomon equations

dM

dt
= −RM, M(0) = I

where M(t) is a matrix of intensities and R is a symmetric relaxation matrix. Thus M(t) = e−Rt.
Burnup calculations in nuclear reactor analysis involve

dX

dt
= AX, X(0) = X0,

where A is often upper triangular.

7

3 PROPERTIES 2.3 Application to Complex Networks

2.3 Application to Complex Networks

Adjacency matrix of the following undirected network:

1

2

3 4

gives

A =


0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

 .

▶ Definition 2.1 (Network measures).

• Centrality: (eA)ii measures how important node i is,

• Communicability: (eA)ij measures how well information is transferred between nodes i and j.

▶ Remark.

• We can use the resolvent (I − αA)−1 in place of eA.

• trace(cosh(A))/ trace(eA) is a measure of how close a graph is to bipartite.

2.4 The Average Eye

First order character of optical systtem characterized by transference matrix

T =

[
S δ
0 1

]
∈ R5×5

where S ∈ R4×4 is symplectic:

STJS = J =

[
0 I2
−I2 0

]
.

The usual average m−1
∑m

i=1 Ti is not a transference matrix. Harris(2005) propose the average

exp

(
m−1

m∑
i=1

log(Ti)

)

which is always a transference matrix.

2.5 Random Multivariate Samples in Statistics

When we sample from N(µ,C), we normally sample x ∈ N(0, I), then compute the Cholesky factorization
of C = LLT , then y = µ+ Lx ∼ N(µ,C), C ∈ Rm×m. In some applications, C has dimension greater
than 1012 and computing the Cholesky factor is impractical. Chen, Anitescu and Saad propose that
y = µ+ C1/2x ∼ N(µ,C). This is practical since we only need to compute C1/2x instead of compute
C1/2 explicitly, and C1/2x can be computed via such as Krylov method.

3 Properties

We present some basic properties of matrix functions.

(P1) f(XAX−1) = Xf(A)X−1. This is immediate from the Jordan form definition, since similar matrices
can be taken to have the same Jordan form. This is also immediate from f(A) is a polynomial of
A, then f(XAX−1) = Xf(A)X−1 comes from (XAX−1)k = XAkX−1.

8

3 PROPERTIES 3.1 Function of Triangular Matrices

(P2) Eigenvalues of f(A) are f(λi), where the λi are the eigenvalues of A. Notice that A and f(A) are
not necessarily have the same Jordan form. For example, define the sign function

sign(z) =

{
1 Re(z) ≥ 0,

−1 Re(z) ≤ 0,

then sign(A) = Z diag(sign(λi))Z
−1 where the large Jordan block collapses into several 1×1 Jordan

block.

(P3) If A = (Aij) is a block triangular, then F = f(A) is block triangular with the same block structure
as A, and Fii = f(Aii).

(P4) If D = diag(Dii), then f(D) = diag(f(Dii)).

(P5) If h = f + g, then h(A) = f(A) + g(A); if h(t) = f(g(t)), then h(A) = f(g(A)).

(P6) Polynomial functional relations generalize from the scalar cases. If

G(f1, . . . , fm) = 0,

where G is a polynomial, then G(f1(A), . . . , fm(A)) = 0, such as

sin2(A) + cos2(A) = I,

(A1/p)p = A for any integer p > 0,

eiA = cos(A) + i sin(A).

(P7) Some relations can fail:

• f(A∗) ̸= (f(A))∗ in general,

• elog(A) = A but log(eA) ̸= A in general since it requires A’s eigenvalues lie between ±π.
• (AB)1/2 ̸= A1/2B1/2 in general.

• eA ̸= (eA/α)α in general. This is true for α ∈ R+.

• e(A+B)t = eAteBt for all t if and only if AB = BA.

3.1 Function of Triangular Matrices

▶ Example 3.1 (Function of 2× 2 triangular matrix).

f

([
λ1 t12

λ2

])
=

[
f(λ1) t12f [λ1, λ2]
0 f(λ2)

]
,

where

f [λ1, λ2] =


f(λ2)− f(λ1)

λ2 − λ1
, λ1 ̸= λ2

f ′(λ1), λ1 = λ2.

Proof. Using the fact that T =

[
λ1 t12
0 λ2

]
commute with F = f(T) =

[
f(λ1) F12

0 f(λ2)

]
(this structure is

by property P2 and P3), we have[
λ1 t12
0 λ2

] [
f(λ1) F12

0 f(λ2)

]
=

[
f(λ1) F12

0 f(λ2)

] [
λ1 t12
0 λ2

]
.

By looking at the (1, 2) entry, we have

λ1F12 + t12f(λ2) = f(λ1)t12 + F12λ2

gives

F12 =
f(λ1)− f(λ2)

λ1 − λ2
t12,

which proves the claim.

9

4 FRÉCHET DERIVATIVE AND CONDITION NUMBER 3.2 Diagonalizable Matrices

▶ Theorem 3.2 (Davis, 1973; Descloux, 1963; Van Loan, 1975). If T is upper triangular, so is F = f(T)
and fii = f(tii),

fij =
∑

(s0,...,sk)∈Sij

ts0,s1ts1,s2 · · · tsk−1,skf [λs0 , . . . , λsk],

where λi = tii.

• Sij is the set of all strictly increasing sequences of integers starting at i and ending at j. For
example, S14 = {(1, 4), (1, 2, 4), (1, 3, 4), (1, 2, 3, 4)}, and

• f [λs0 , . . . , λsk] is the kth order divided difference function.

Problem of this formula:

1. Complexity of evaluating via computer is increasing exponentially,

2. hard/tricky to implement the divided difference function.

3.2 Diagonalizable Matrices

How to prove sin2(A) + cos2(A) = I?

▶ Theorem 3.3. Let D be an open subset of R or C and let f be n− 1 times continuously differentiable
on D. Then f(A) = 0 for all A ∈ Cn×n with spectrum in D if and only if f(A) = 0 for all diagonalizable
matrix A ∈ Cn×n with spectrum in D.

Using this theorem, sin2(A) + cos2(A) = I is trivial. And it can be used to prove the following
theorem:

▶ Theorem 3.4. For A ∈ Cn×n with no eigenvalues on R−,

log(A) =

∫ 1

0

(A− I) (t(A− I) + I)
−1

dt. (2)

4 Fréchet Derivative and Condition Number

▶ Definition 4.1 (Fréchet Derivative). The Fréchet Derivative of a matrix function f : Cn×n → Cn×n

at a point X ∈ Cn×n is a linear mapping L : Cn×n → Cn×n such that for all E ∈ Cn×n, where E is an
arbitrary perturbation of X,

f(X + E)− f(X)− L(X,E) = o(∥E ∥).

Fréchet Derivative is linear in the second argument by definition.

▶ Example 4.2. For f(X) = X2, we have

f(X + E)− f(X) = EX +XE + E2,

so L(X,E) = XE + EX.

▶ Example 4.3 (Fréchet Derivative of eA).

L(A,E) =

∫ 1

0

eA(1−s)EeAs ds.

This can be simplified to L(A,E) = EeA = eAE when AE = EA. Another representation will be

L(A,E) = E +
AE + EA

2!
+

A2E +AEA+ EA2

3!
+ · · · .

10

4 FRÉCHET DERIVATIVE AND CONDITION NUMBER 4.1 Condition Number

4.1 Condition Number

For E as a perturbation of A, we have

cond(f,A) = lim
ϵ→0

sup
∥E ∥≤ϵ∥A ∥

∥ f(A+ E)− f(A) ∥
ϵ∥ f(A) ∥

measures the maximum changes in f subject to a small change in A in relative sense.

▶ Lemma 4.4.

cond(f,A) =
∥L(A) ∥∥A ∥
∥ f(A) ∥

,

where

∥L(A) ∥ := max
E ̸=0

∥L(A,E) ∥
∥E ∥

.

▶ Example 4.5 (Condition number of eA).

κexp(A) =
∥L(A) ∥∥A ∥
∥ eA ∥

.

Using ∥L(A) ∥ ≥ ∥L(A, I) ∥ = ∥ eA ∥, we have κexp(A) ≥ ∥A ∥.
▶ Theorem 4.6.

• For normal A ∈ Cn×n, κexp(A) = ∥A ∥2.

• If A ∈ Rn×n is a nonnegative scalar multiple of a stochastic matrix, then in the ∞-norm, κexp(A) =
∥A ∥∞.

4.2 Computing Lf

We can compute Lf via 2n× 2n matrix: Consider the matrix[
A E
0 A

]
∈ C2n×2n,

then

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)
0 f(A)

]
.

Note that Lf (A,αE) = αLf (A,E), but α may affect algorithm used for the evaluation, since we can
let αE be arbitrarily smaller than A which could lead to inaccuracy.

Instead, we can compute the Lf via finite difference method,

f ′(x) =
f(x+ h)− f(x)

h
.

Notice that, we need a little bit of care when choosing h, the accuracy will increase when h→ 0, but it
will eventually loses its accuracy due to cancellation error (roundoff error).

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

Fig. 1. The absolute error of f ′(1) using finite difference method, where f(x) = x2. (See Appendix A.1)

11

4 FRÉCHET DERIVATIVE AND CONDITION NUMBER 4.3 Condition Estimation

We can improve from this method by the following: assume f : Rn×n → Rn×n and A,E ∈ Rn×n.
Then

f(A+ ihE)− f(A)− ihLf (A,E) = o(h).

Thus (AI-Moly, Higham, 2010)

f(A) ≈ Re f(A+ ihE), Lf (A,E) ≈= Im

(
f(A+ ihE)

h

)
.

This can be explained via Taylor expansion,

f(X + ihE) = f(X) + ihLf (A,E)− h2

2!
L
(2)
f (A,E) +

ih3

3!
L
(3)
f (A,E)− · · ·

where

L
(i)
f (A,E) =

dj

dtj
f(A+ tE) |t=0 .

Taking the Im(·), we have f(A+ihE)
h is an order O(h2) approximation of Lf (A,E).

▶ Remark.

• h is not restricted by floating point arithmetic considerations.

• Computing f must not employ complex arithmetic, e.g. we cannot use Schur decomposition which
can arise complex values.

4.3 Condition Estimation

The key idea is that: Lf is a linear function of E. Then

vec(Lf (A,E)) = K(A)vec(E) (3)

where K(A) ∈ Cn2×n2

is the Kronecker form of the Fréchet Derivative.

▶ Lemma 4.7.
∥Lf (A) ∥F = ∥K(A) ∥2.

Proof. Notice that ∥A ∥F = ∥ vec(A) ∥2, then

∥Lf (A) ∥F = max
E ̸=0

∥Lf (A,E) ∥F
∥E ∥F

= max
E ̸=0

∥ vec(Lf (A,E)) ∥2
∥ vec(E) ∥2

= max
E ̸=0

∥K(A)E ∥2
∥ vec(E) ∥2

= ∥K(A) ∥2,

by definition of 2-norm.

Algorithm 1 Power method applied to A∗A to produce γ ≤ ∥A ∥2
1: Choose a nonzero starting vector z0 ∈ Cn,
2: for k = 0 :∞ do
3: wk+1 = Azk
4: zk+1 = A∗wk+1

5: γk+1 = ∥ zk+1 ∥2/∥wk+1 ∥2
6: if Converged then
7: γ = γk+1, quit.
8: end if
9: end for

For A = K(A), we would like to know how to compute (K(A))∗x and K(A)x. These quantities can
be calculated using Fréchet Derivative by (3) which gives Algorithm 2.

12

5 PROBLEM CLASSIFICATION

Algorithm 2 2-norm power method to produce γ ≤ ∥Lf (A) ∥F .

1: Choose a starting nonzero starting matrix Z0 ∈ Cn×n.
2: for k = 0 :∞ do
3: Wk+1 = Lf (A,Zk)
4: Zk+1 = L∗

f (A,Wk+1)
5: γk+1 = ∥Zk+1 ∥F /∥Wk+1 ∥F
6: if Converged then
7: γ = γk+1, quit.
8: end if
9: end for

In practice, we use instead the block 1-norm estimator (Higham & Tisseur, 2000).

5 Problem Classification

5.1 Small/Medium Scale Problem

1. Decomposition

• Normal A: if we can compute Schur/spectral decomposition A = QDQ∗, D = diag(di), then
f(A) = Qdiag(f(di))Q

∗.

• Nonnormal A: if we can compute Schur decomposition A = QTQ∗, then use Schur-Parlett
method.

2. Matrix iterations: Xk+1 = g(Xk), X0 = A, for matrix pth root, sign function, polar decomposition.
Iterations only require matrix multiplication and solution of multiple right-hand side linear system.

3. Approximation method: polynomial (Taylor expansion) and rational (Padé) approximation.

5.2 Large Scale f(A)b problem

Assume that A is large and sparse, f(A) cannot be stored exactly and the problem is f(A)b: action of
f(A) on b.

Case 1. We can solve Ax = b by sparse direct methods such as SparseLU in MATLAB but cannot
compute the Schur decomposition: “backslash matrix”.

• Cauchy integral formula can be used (Hale, H & Trefethen, 2008).

• Rational Krylov can be used with direct solves.

Case 2. We can only compute matrix-vector products Ax and maybe A∗x. You may have more
information of A such as A is symmetric or λ(A) ⊆ [λmin, λmax] with λmin and λmax known.

• Krylov methods.

• Polynomial approximations.

5.3 Accuracy Requirement

• Full double precision.

• Variable tolerance, e.g. within an ODE integrator.

• Given tolerance, where matrix A is subject to measurement error, e.g. ≈ 10−4 in engineering and
healthcare.

13

6 METHODS FOR f(A)

6 Methods for f(A)

This this second, we will introduce

• Approximation techniques: Taylor series and Padé approximation.

• Decomposition techniques: Similarity transformations and block diagonalizations.

• Iteration methods: Parlett recurrence, BH method, block Parlett recurrence and Schur-Parlett
algorithm.

• Finally we analyze the Newton’s method for matrix sign function and square root function.

Approximation Methods.

6.1 Taylor Series

Matrix Taylor series converges if eigenvalues of increment matrix lie within radius of convergence of series.
Thus for all A,

cos(A) = I − A2

2!
+

A4

4!
− A6

6!
+ · · ·

We have the bound for error in trancated Taylor series in terms of appropriate derivative at matrix
argument. However, we need some numerical consideration of computing the truncated Taylor series.

6.2 Padé Approximation

Rational function rkm(x) = pkm(x)/qkm(x) is a [k,m] Padé approximation to f(x) =
∑∞

i=0 αix
i if pkm

and qkm are polynomials of degree at most k and m respectively, and

f(x)− rkm(x) = O(xk+m+1).

The idea is: pkm is a polynomial of degree k, so it has k + 1 degree of freedom. Similarly, qkm has m+ 1
degree of freedom. Therefore, we have k +m + 2 degree of freedom in total. However, multiply pkm
and qkm by the same constant will not change rkm cause the degree of freedom is actually k +m+ 1.
Therefore we expect f(x) − rkm(x) = O(xk+m+1) which is the first “unconsidered” term of the Padé
approximant rkm(x).

▶ Remark.

• This is generally more efficient than truncated Taylor series.

• Possible ways of evaluating rkm(x)

– Ratio of polynomials.

– Continued fractions.

– Partial fractions.

Decomposition methods: Similarity transformations and block diagonalization.

6.3 Similarity Transformations

We can use the formula
A = XBX−1 ⇒ f(A) = Xf(B)X−1

provided f(B) is easy to compute.
The problem of this method is that, any error in f(B) will be magnified by a factor up to κ(X) =

∥X ∥∥X−1 ∥: Consider A = XBX−1 and f(A) = Xf(B)X−1. Suppose we have our computed f(A) as

F̃ = X(f(B) +∆B)X−1, where ∥∆B ∥ ≈ u∥B ∥. Then we have F̃ = f(A) +∆F , where

∥∆F ∥ ≤ u∥B ∥κ(X).

14

6 METHODS FOR f(A) 6.4 Block Diagonalization

The matrix X can be ill-conditioned which leads to a large error in computed f(A). This is why we
prefer unitary X, thus we can use

• Eigendecomposition (diagonal B) when A is normal.

• Schur decomposition (triangular B) in general A.

▶ Example 6.1. Suppose we have our funm ev

function F = funm_ev(A,fun)
[V,D] = eig(A);
F = V * diag(feval(fun ,diag(D))) / V;

Then we compare the error

>> A = [3,-1;1,1]; X = funm_ev(A,@sqrt)
X =

1.7678e+00 -3.5355e-01
3.5355e-01 1.0607e+00

>> norm(A-X*X) % cond(V) = 9.5e7
ans =

2.3067e-08
>> Y = sqrtm(A); norm(A-Y*Y)
ans =

6.4855e-16

6.4 Block Diagonalization

We could find a intermediate solution between the Schur form and completely diagonalizing the matrix is
the block diagonalization A = XDX−1, where

• X is well conditioned.

• D = diag(Dii) is block diagonal.

We start from a Schur decomposition A = QTQ∗, then we do further work to compute a block diagonal
matrix D = XTX−1 = diag(Dii) where κ(X) < tol. The size of block depends on your tolerance, the
smaller then tol is, the bigger the block you will get.

Go back to Schur form and let’s see how to compute F = f(T) where T is triangular.

6.5 Parlett’s Recurrence

If T is upper triangular, then F = f(T) is upper triangular as well, and fii = f(tii). Parlett (1976)
showes that the off-diagonal entries can be obtained by recurrence, derived from FT = TF :

fij = tij
fii − fjj
tii − tjj

+

j−1∑
k=i+1

fiktkj − tikfkj
tii − tjj

,

which enables F to be computed a column or a superdiagonal at a time.
However, the recurrence fails when T has repeated eigenvalues, and can suffer from severe loss of

accuracy in floating point arithmetic when two eigenvalues tii and tjj are very close.
This method has been used in MATLAB 6.5 (2002) and eariler.

6.6 Block Parlett Recurrence

Recall that Parlett fails for repeated eigenvalues. We can develop a block version of Parlett recurrence. For
T upper triangular, we can partition T = (Tij) with square diagonal blocks such that λ(Tii)∩ λ(Tjj) = ∅.
T and F = f(T) has the same block structure. From FT = TF , we have the Sylvester equations of Fij

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(FikTkj − TikFkj) ,

and this is guaranteed to have unique solution1.

1For general Sylvester equation AX +XB = C, it has unique solution if and only if λ(A) ∩ λ(−B) = ∅.

15

6 METHODS FOR f(A) 6.7 Schur-Parlett Algorithm

6.7 Schur-Parlett Algorithm

Based on the block Parlett algorithm and Schur decomposition, we have the Schur-Parlett algorithm:

1. Given a general A, we get the Schur decomposition A = QTQ∗.

2. Re-order T to block triangular form in which the eigenvalues within a block are “close” and those
of separate blocks are “well separated”.

3. Evaluate Fii = f(Tii).

4. Solve the Sylvester equations as shown in Section 6.6

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(FikTkj − TikFkj) .

5. Finally, f(A) = QFQ∗.

▶ Remark.

1. Reordering step: Need to choose how we cluster the eigenvalues, for example λi and λj go into the
same set if |λi − λj | ≤ δ = 0.1. LAPACK carries out the swaps by unitary transformations.

2. Function of atomic blocks: One problem arises in step 3 of the Schur-Parlett algorithm is how to
compute f(Tii)? These blocks are called the “atomic block” since they cannot be further split
up to smaller block. We can rewrite Tii = σI +M where σ = trace(Tii)/dim(Tii) which is the
average of the eigenvalues of Tii. Then M is triangular with small eigenvalues. Then we use the
Taylor series

f(Tii) = f(σI +M) = f(σI) + f ′(σI)M + · · · .

M has small eigenvalues on diagonal, we expect Mk → 0 rapidly.

3. Feature of Algorithm:

• Cost O(n3) flops, or upto n4/3 flops if large blocks needed.

• For blocks of size greater than 1, we needs derivatives.

• Parameter δ control the blocking and the algorithm may be unstable for any δ.

• This algorithm is the basis of funm in MATLAB.

6.8 Björck & Hammarling Method

Suppose we would like to compute the matrix square root. We can do the following by consider X2 = A,

1. Compute the Schur decomposition A = QTQ∗.

2. X = A1/2 = QT 1/2Q∗ =: QUQ∗.

3. Solve the problem U2 = T where T is upper triangular.

Björck and Hammarling (1983) solved this by

uii =
√
tii, uij =

tij −
∑j−1

k=i+1 uikukj

uii + ujj
,

and then form X = QUQ∗. This algorithm can never fail provided A is nonsingular, since we are choosing
the principal square root which makes uii + ujj > 0. This has been extended to pth root (Up = T) by
Smith (2003).

▶ Remark.

• Schur decomposition gives perfect numerical stability.

• Cost is reasonable O(pn3). For large p, one can reduce it to O(n3 log p).

16

6 METHODS FOR f(A) 6.9 Matrix Sign Function

• This can be generalized to real Schur decomposition.

▶ Remark (Parlett v.s. Björck & Hammarling). Parlett recurrence is not “optimal”, from the square
root formula: x12 is obtained from

Parlett
a12(
√
a11 −

√
a22)

a11 − a22
=

a12√
a11 +

√
a22

B & H.

Newton’s method for matrix sign function and matrix square root.

6.9 Matrix Sign Function

Let A ∈ Cn×n has no pure imaginary eigenvalues and has the Jordan canonical form

A = Z

[
J1

J2

]
Z−1

where J1 ∈ Cp×p and J2 ∈ Cq×q have spectra in open left half-plane and right half-plane, respectively.
The matrix sign function is defined by

sign(A) = Z

[
−Ip

Iq

]
Z−1.

Alternatively,
sign(A) = A(A2)1/2.

Alternatively,

sign(A) =
2

π
A

∫ ∞

0

(t2I +A2)−1 dt. (4)

6.9.1 Newton’s Method for sign function

Apply Newton’s method to X2 = I, we will get

Xk+1 =
1

2
(Xk +X−1

k), X0 = A.

Convergence. Let S := sign(A), G := (A− S)(A+ S)−1. Then we have

Xk =
(
I −G2k

)−1 (
I +G2k

)
S,

where the eigenvalues of G are
(λi − sign(λi))/(λi + sign(λi))

which is strictly less than 1. Hence ρ(G) < 1 gives Gk → 0. Hence Xk → S as k →∞.
Programming Aspect. Convergence can be very slow initially. Suppose we have a very large

eigenvalue in X0, then X1 = (X0 +X−1
0)/2 which ρ(X1) ≈ ρ(X0)/2. This leads to linear convergence,

therefore in practice we will include some scaling to speed it up.

6.10 Newton’s Method for Square Root

Newton’s method applies to X2 = A gives

Solve XkEk + EkXk = A−X2
k

Xk+1 = Xk + Ek

}
k = 0, 1, 2,

This is not feasible since solving Sylvester equation requires Schur decomposition, but if we have the
Schur decomposition, we can instead use the Björck and Hammarling method to compute the square root.

In addition, suppose we assume AX0 = X0A, then we can show that

Xk+1 =
1

2
(Xk +X−1

k A). (∗)

17

6 METHODS FOR f(A) 6.11 Convergence Analysis of Newton’s Method

▶ Remark.

1. For nonsingular A, we expect a local quadratic convergence of full Newton to a primary square
root.

2. To which square root do the iteration converge?

3. (∗) can converge when full Newton breaks down (Jacobian matrix is singular). Hence the full
Newton’s method and (∗) are not fully equivalent.

4. Lack of symmetry in (∗).

6.11 Convergence Analysis of Newton’s Method

How do we analyze the convergence of (∗)?

6.11.1 Jordan form

By Assume X0 = p(A) for some polynomial p, then all the iterates are all polynomials in A. Let
Z−1AZ = J be Jordan canonical form and set Z−1XkZ = Yk. Then

Yk+1 =
1

2

(
Yk + Y −1

k J
)
, Y0 = J.

Notice, J is upper triangular, therefore all Yk are upper triangular. In particular, the diagonal of Yk have
the following iteration form in scalar:

Heron: yk+1 =
1

2

(
yk +

λ

yk

)
, y0 = λ,

which converges to
√
λ. Therefore the convergence of eigenvalues is immediate from the classical results.

What about the convergence of the off-diagonal entries? The result is not immediate, details can be
found in (Higham, Function of Matrices, Thm 4.15).

▶ Remark. Analysis does not generalize to AX0 = X0A where X0 is not necessarily a polynomial in A.
X0 = p(A) implies X0A = AX0, and the converse is not true in general. In fact, X0 is commute with
every matrix that commute with A, then X0 = p(A).

6.11.2 Sign function

▶ Theorem 6.2. Let A ∈ Cn×n has no eigenvalues on R−. The Newton square root iterates Xk with
X0A = AX0 are related to the Newton sign iterates

Sk+1 =
1

2

(
Sk + S−1

k

)
, S0 = A−1/2X0

by Xk ≡ A1/2Sk. Hence provided A−1/2X0 has no pure imaginary eigenvalues, the Xk are defined and
Xk → A1/2sign(S0) quadratically.

Sketch proof. S0 = A−1/2X0 implies S0 commute with A since X0 and A−1/2 are polynomials of A,
hence S0 is a polynomial of A with commutes with A.

Assume that Xk = A1/2Sk and SkA = ASk, then SkA
1/2 = A1/2Sk since A1/2 is a polynomial in A.

Xk+1 =
1

2
(Xk +X−1

k A) =
1

2
(A1/2Sk + S−1

k A−1/2A) =
1

2
A1/2(Sk + S−1

k) = A1/2Sk+1.

Sk+1A = ASk+1 because SkA = ASk.

This theorem gives Xk → A1/2 if λ(A−1/2X0) ⊆ RHP.

18

6 METHODS FOR f(A) 6.12 Stability of Newton Iteration

6.12 Stability of Newton Iteration

▶ Definition 6.3. The iteration Xk+1 = g(Xk) is stable in a neighborhood of a fixed point X if Fréchet
Derivative Lg(X,E) has bounded powers.

Let X0 = X + E0, and Ek := Xk −X. Then

Xk+1 = g(Xk) = g(X + Ek) + Lg(X,Ek) + o(∥Ek ∥).

Since g(X) = X and Xk+1 = X + Ek,

Ek+1 = Lg(X,Ek) + o(∥Ek ∥).

If ∥Li
g(X,E) ∥ ≤ c for all i, then recurring leads to

∥Ek ∥ ≤ c∥E0 ∥+ kc · o(∥E0 ∥).

6.12.1 Stability of Matrix Square Root

• g(X) = 1
2 (X +X−1A).

• Lg(X,E) = (E −X−1EX−1A)/2. Details in Appendix A.2.

• Fixed point: X = A1/2.

• Lg(A
1/2, E) = (E −A−1/2EA1/2)/2. And Li

g(A
1/2, E) is bounded if all eigenvalues are in the unit

disc. The problem is what are the eigenvalues of Lg(A
1/2, E)?

Approach 1. Taking the vec operator:

vec(Lg(A
1/2, E)) = vec((E −A−1/2EA1/2)/2)

=
1

2

(
vec(E)− ((A1/2)T ⊗A−1/2)vec(E)

)
=

1

2
(I − (A1/2)T ⊗A−1/2)vec(E).

This is computable.

Approach 2. Let Azi = λizi and z∗jA = λjz
∗
j . Define E = ziz

∗
j , then

Lg(A
1/2, E) =

1

2

(
ziz

∗
j −A−1/2ziz

∗
jA

1/2
)
=

1

2
(ziz

∗
j − λ

−1/2
i ziλ

1/2
j z∗j),

which is equivalent to

Lg(A
1/2, E) =

1

2

(
1−

λ
1/2
j

λ
1/2
i

)
E.

Therefore, to ensure stability, we need

max
i,j

1

2
| 1−

λ
1/2
j

λ
1/2
i

| < 1.

For A is Hermitian positive definite, κ2(A) < 9.

▶ Remark (Advantages of Def. 6.3).

• No additional assumption on A.

• Perturbation analysis is all in the definition.

• General, unifying approach.

19

7 METHODS FOR f(A)b 6.13 More Iterations for Sign Function

6.12.2 Stability of Sign Iteration

▶ Theorem 6.4. Let Xk+1 = g(Xk) be any superlinearly convergent iteration for S = sign(X0).
Then Lg(S,E) = (E − SES)/2, where Lg(S,E) is the Fréchet Derivative of matrix sign function at
S. Hence Lg(S,E) is idempotent (Lg(S,E) ◦ Lg(S,E) = Lg(S,E)), and the iteration is stable. Since
Li
g(S,E) = Lg(S,E) which is definitely bounded.

6.13 More Iterations for Sign Function

Starting with Newton’s method:

xk+1 =
1

2
(xk + x−1

k)

• Invert: xk+1 = 2xk/(x
2
k + 1), which is quadratic convergent.

• Halley: xk+1 = (xk(3 + x2
k))/(1 + 3x2

k), which is cubic convergent.

• Newton–Schulz: xk+1 = xk(3− x2
k)/2, which is quadratic but not globally convergent.

7 Methods for f(A)b

Given A ∈ Cn×n, b ∈ Cn and f : Cn×n → Cn×n. We would like to compute f(A)b without first
computing f(A).

7.1 A1/2b via contour integration

f(A)b =
1

2πi

∫
Γ

f(z)(zI −A)−1b dz.

By computing the system (zI −A)−1b = x which is a shifted linear system, we can do the quadrature
integration method. Suppose we would like to compute a 5× 5 Pascal matrix: λ(A) ∈ [0.01, 92.3], f(z) =
z1/2. If we use the repeated trapezium rule to integrate around circle centred at (λmin + λmax)/2 with
radius λmax/2. To get 2 digits accuracy, we need 32,000 integration points, and 262,000 for 13 digits
accuracy.

However, from Hale, Higham and Trefethen (2008), they did a conformally mapping from C\{(−∞, 0]∪
[λmin, λmax]} to an annulus: [λmin, λmax] is mapped to the inner circle and [−∞, 0] to the outer circle.
Using this approach, we only require 5 integration points for 2 digits accuracy and 35 points for 13 digits.

7.2 Aαb via binomial expansion

We cannot directly do binomial expansion on Aα, but let A = s(I−C) where s ∈ C, then Aα = sα(I−C)α,
and we can do a binomial expansion of (I − C)α. However, this requires ρ(C) < 1 to let the binomial
expansion to converge.

If λi > 0, then s = (λmin + λmax)/2 does the job, since

ρmin(C) =
λmin − λmax

λmin + λmax
.

From

(1− C)α =
∞∑
j=0

(
α
j

)
(−C)j , ρ(C) < 1

we have

Aαb = sα
∞∑
j=0

(
α
j

)
(−C)jb.

20

7 METHODS FOR f(A)b 7.3 Aαb via ODE IVP

7.3 Aαb via ODE IVP

Consider the ODE
dy

dt
= α(A− I) [t(A− I) + I]−1 y, y(0) = b,

which has the unique solution
y(t) = [t(A− I) + I]αb,

so
y(1) = Aαb.

Used by Allen, Baglama and Boyd (2000) for α = 1/2 and symmetric poisitive definite A.

7.4 Compute eAb

We have the following formulae for eA, A ∈ Cn×n,

1. Taylor series:

I +A+
A2

2!
+

A3

3!
+ · · · .

2. Limit:
lim
s→∞

(I +A/s)s.

3. Scaling and Squaring (
eA·2−s

)2s

.

4. Cauchy integral:
1

2πi

∫
Γ

ez(zI −A)−1 dz.

5. Jordan form:
Z diag(eJk)Z−1.

6. Interpolation:
n∑

i=1

f [λ1, . . . , λn]
i−1∏
j=1

(A− λjI).

7. Differential system:
Y ′(t) = AY (t), Y (0) = I.

8. Schur form:
QeTQ∗.

9. Padé approximation:
pkm(A)q−1

km(A).

10. Krylov method: Using the Arnoldi factorization:

AQk = QkHk + hk+1,kqk+1e
T
k

with Hessenberg Hk, then
eAb ≈ Qke

HkQ∗
kb.

We now want to discuss how we can compute eAB, where A ∈ Cn×n and B ∈ Cn×n0 with n0 ≪ n.
Suppose we are able to compute Ax and A∗x. The problem will be: Given tol, A and B, we would like
to compute eAB with “error” ≤ tol.

21

7 METHODS FOR f(A)b 7.4 Compute eAb

7.4.1 AH-Algorithm

For integer s,
eAB =

(
es

−1A
)s
B = es

−1A · · · es
−1A︸ ︷︷ ︸

s times

B.

Choose s so that we can get the following truncated Taylor series

Tm(s−1A) =
m∑
j=0

(s−1A)j

j!
≈ es

−1A.

Then
Bi+1 = Tm(s−1A)Bi, i = 0 : s− 1, B0 = B

yields Bs ≈ eAB. The question is how to choose s and m? We could do the following truncation analysis:
We know that Tm(A) ≈ eA, therefore

log(e−ATm(A)) =: hm+1(A)

we need to show this difference is close to 0, i.e. hm+1(A)≪ 1. Take exponential at both sides

e−ATm(A) = ehm+1(A)

gives
Tm(A) = eAehm+1(A) = eA+hm+1(A)

since A and hm+1(A) commute. Then we can require ∥hm+1(A) ∥ ≤ tol∥A ∥. Similarly,(
Tm(A2−s)

)2s

= eA+2shm+1(2
−sA) =: eA+∆A.

The aim is selecting s such that

∥∆A ∥
∥A ∥

=
∥hm+1(2

−sA) ∥
2−sA

≤ u ≈ 1.1× 10−16.

In 2005 paper by Higham, it bound the

hm+1(A) =
∞∑

k=m+1

ckA
k

by

∥hm+1(A) ∥ ≤
∞∑

k=m+1

| ck |∥A ∥k.

This bound is too trivial, can we do anything better?

▶ Lemma 7.1 (AI-Mohy and Higham, 2009). Tm(s−1A)sB = eA+∆AB, where ∆A = shm+1(s
−1A)

and hm+1(x) = log(e−xTm(x)) =
∑∞

k=m+1 ckx
k. Moreover

∥∆A ∥ ≤ s
∞∑

k=m+1

| ck |αp(s
−1A)k

if m+ 1 ≥ p(p− 1), where

αp(A) = max(dp, dp+1), dp = ∥Ap ∥1/p.

Motivation: Here we bound the norm of hm+1(X) =
∑∞

k=m+1 ckX
k. The nonnormality implies

ρ(A)≪ ∥A ∥. Notice that

ρ(A) ≤ ∥Ap ∥1/p ≤ ∥A ∥, p = 1 :∞

and limp→∞ ∥Ap ∥1/p = ρ(A). Hence we would like to use ∥Ap ∥1/p instead of ∥A ∥ in the truncation
bounds.

Therefore the key idea of the algorithm is

22

7 METHODS FOR f(A)b 7.4 Compute eAb

Algorithm 3 Algorithm for F = etAB

1: µ = trace(A)/n
2: A = A− µI
3: [m∗, s] = parameter(tA)
4: F = B, η = etµ/s

5: for i = 1 : s do
6: c1 = ∥B ∥∞
7: for j = 1 : m do
8: B = tAB/(sj), c2 = ∥B ∥∞
9: F = F +B

10: if c1 + c2 ≤ tol∥F ∥∞, quit, end
11: c1 = c2
12: end for
13: F = ηF,B = F .
14: end for

• Use the ∥Ap ∥1/p in the truncation bounds for a few small p.

• Choose optimal m and s for given tolerance.

• Preprocess A by shifting A← A− µI where µ = trace(A)/n to scale A with less condition number.

Conditioning of eAB. How accurate can we expect the answer? Given A,B, we compute eAB, the
condition number can be defined as

κexp(A,B) := lim
ϵ→0

sup
∥∆A ∥≤ϵ∥A ∥
∥∆B ∥≤ϵ∥B ∥

∥ eA+∆A(B +∆B)− eAB ∥
ϵ∥ eAB ∥

.

Then

κexp(A,B) ≤ ∥ e
A ∥F ∥B ∥F
∥ eAB ∥F

(1 + κexp(A)).

Therefore, the best we can expect is

Rel. Error ≤ κexp(A,B) · tol.

From the rounding error analysis, the relative error due to roundoff is bounded by

ue∥A ∥2∥B ∥2/∥ eAB ∥F .

The question now becomes

ue∥A ∥2∥B ∥2
∥ eAB ∥F

?
< u
∥ eA ∥F ∥B ∥F
∥ eAB ∥F

(1 + κexp(A))

Cancelling yields

e∥A ∥2
?
< ∥ eA ∥F (1 + κexp(A)).

▶ Remark.

• If A is normal, then κexp(A) = ∥A ∥2, then instability arises. Suppose A is Hermitian, then
∥ eA ∥2 = eλmax , however, e∥A ∥2 = max(eλmax , e−λmin). Thus, the instability arises when A is
Hermitian and has a large negative eigenvalue.

• However, we have shifted the matrix A by µI which gives λmax = −λmin which implies e∥A ∥2 =
∥ eA ∥2 which implies stability for Hermitian A.

23

7 METHODS FOR f(A)b 7.4 Compute eAb

Table 1. Advantages of AH-algorithm over Krylov method.

AH-Algorithm Krylov Method

Most time spent in matrix-vector product. Krylov recurrence and eH can be signifi-
cant.

“Direct method”, hence the cost is pre-
dictable.

Need stopping test.

No parameter to estimate. Select Krylov subspace size.
Storage: 2 vectors. Storage: Krylov basis.
Handle with B which is a matrix. To handle B, we need block Krylov

method.

24

A SUPPLIMENTARY

A Supplimentary

A.1 Figure 1

% we would like to find the total error (truncation error + roundoff
% error) of f(x) = x^2 near x = 1. f’(x) = 2x.
clc; clear; close all;
power = -1:-1e-3: -16;
h = 10; h = h.^ power;
error = zeros(length(h) ,1);
ref = 2;
MC = 50;
for i = 1: length(h)

acc = 0;
for j = 1:MC

acc = acc + ((1+h(i))*(1+h(i)) - 1)/h(i) - 2;
end
error(i) = acc/MC;

end
loglog(h,abs(error));
xlabel ("Time step (h)");
ylabel ("Total Error ");
set(gca ," FontSize ",20);

A.2 Proof in Section 6.12.1

We would like to prove for g(X) = 1
2(X + X−1A). The Fréchet Derivative is given by Lg(X,E) =

(E −X−1EX−1A)/2.

Proof. g(X +E)− g(X) = (E + (X +E)−1A−X−1A)/2. Remain to expand (X +E)−1: Consider the
expansion of (X + E)−1,

(X + E)−1 = (X(I +X−1E))−1 = (I +X−1E)−1X−1

= (f(I) + f ′(I)X−1E +O(∥E ∥2))X−1

= (I + (−I2)X−1E)X−1 +O(∥E ∥2)
= X−1 −X−1EX−1 +O(∥E ∥2).

Going back to Lg(X,E), we have

g(X + E)− g(X) = (E + (X−1 −X−1EX−1 +O(∥E ∥2))A−X−1A)/2,

expanding out yields the result.

25

	History and Definitions
	Definition via Jordan canonical form
	Definition via Interpolation
	Definition via Cauchy Integral Formula
	Defintion via Schwerdtfeger's formula
	Equivalence of Definition
	Primary and Nonprimary Functions
	Principal Logarithm, root and power

	Application
	Toolbox of Matrix Functions
	Linear Constant Coefficient ODE
	Application to Complex Networks
	The Average Eye
	Random Multivariate Samples in Statistics

	Properties
	Function of Triangular Matrices
	Diagonalizable Matrices

	Fréchet Derivative and Condition Number
	Condition Number
	Computing Lf
	Condition Estimation

	Problem Classification
	Small/Medium Scale Problem
	Large Scale f(A)b problem
	Accuracy Requirement

	Methods for f(A)
	Taylor Series
	Padé Approximation
	Similarity Transformations
	Block Diagonalization
	Parlett's Recurrence
	Block Parlett Recurrence
	Schur-Parlett Algorithm
	Björck & Hammarling Method
	Matrix Sign Function
	Newton's Method for Square Root
	Convergence Analysis of Newton's Method
	Stability of Newton Iteration
	More Iterations for Sign Function

	Methods for f(A)b
	A1/2b via contour integration
	Ab via binomial expansion
	Ab via ODE IVP
	Compute eAb

	Supplimentary
	Figure 1
	Proof in Section 6.12.1

