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CONTENTS CONTENTS

Syllabus

(1) The heat equation (Fourier’s law). [1]

(2) The diffusion equation (Fick’s law). [1]

(3) Einstein’s derivation of the diffusion equation (stationary independent increments). [2]

(4) The Wiener process (position of a Brownian particle). [6]

(5) The Ornstein-Uhlenbeck process (velocity of a Brownian particle). [2]

(6) Strong Markov property (starting afresh at stopping times). [2]

(7) Diffusion processes (scale function, speed measure, infinitesimal operator). [8]

(8) Boundary classification (regular, exit, entrance, natural). [2]

(9) The Kolmogorov forward and backward equations. [2]

(10) Probabilistic solutions of PDEs (elliptic and parabolic). [6]

(11) Optimal stopping, free boundary problems, the American option problem. [2]

(12) Optimal stochastic control, the Hamilton-Jacobi-Bellman equation, the optimal consumption-
investment problem. [2]

Notice This course seems to experience a major change, and the following note will not completely
follows the syllabus. However, this still roughly covers all the things we developed during the course.
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1 PRELIMINARIES

1 Preliminaries

1.1 Probability and Expectations

▶ Definition 1.1 (σ-algebra). A collection F of subsets of Ω is called σ-algebra if the following three
conditions holds

• Ω ∈ F .

• If A ∈ F , then Ac := Ω \A ∈ F , and

• If Ai ∈ F for i = 1, 2, . . . , then
⋃∞

i=1 Ai = A1 ∪A2 ∪ · · · ∈ F .

Let Ω be the sample space and F be a σ-algebra on Ω, we call the tuple (Ω,F) a measurable space.

▶ Definition 1.2. For any collection D of subsets of Ω, the smallest σ-algebra G that contains all
elements of D is called the σ-algebra generated by D. We write G = σ(D).

Let (Ω,F ,P) be a probability space.

▶ Definition 1.3 (random variable). Let X : Ω 7→ R be a function on the probability space (Ω,F ,P).
Then, X is a random variable if for any B ∈ B(R), the pre-image

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F .

We can then define the probability law on (R,B(R)), PX , defined by

PX(A) = P(X−1(A)), ∀A ∈ B(R).

Then, two random variables X and Y have the same law if

PX(B) = PY (B), ∀B ∈ B(R).

If X and Y have the same law, we write X
d
= Y .

▶ Definition 1.4. Let X be a random variable. We define σ(X), the σ-algebra generated by X, as the
minimal σ-algebra with respect to which X is measurable, that is

σ(X) =
{
{ω : X(ω) ∈ B}, B ∈ B(R)

}
.

▶ Definition 1.5 (Borel function). A function g : R → R is a Borel function if g−1(B) ∈ B(R) for any
B ∈ B(R).
▶ Lemma 1.6. Let X and Y be random variables. If Y be a random variable which is σ(X)-measurable.
Then there exists a Borel function g : R → R, such that Y (ω) = g(X(ω)), ω ∈ Ω.

For A ∈ F , define the indicator function of the event A as

1A(ω) =

{
1, if ω ∈ A,

0, if ω ∈ Ac.

We will now define the expectation of a random variable X against a probability measure, denoted as
E[X] or

∫
Ω
X(ω)dP(ω).

If X is a discrete random variable that takes values in the finite set RX = {x1, x2, . . . , xn}, we can
present it as follows

X(ω) =

n∑
i=1

xi1Ai
(ω),

where Ai = {ω : X(ω) = xi}. Then we can define the expectation as

E[X] =

n∑
i=1

xiP(Ai) =

n∑
i=1

xiP(X = xi).
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1 PRELIMINARIES 1.1 Probability and Expectations

For a continuous random variable X with the probability density function fX(x), we have

E[X] =

∫ ∞

−∞
xfX(x)dx.

The indicator function have the following property,∫
Ω

1A(ω)dP(ω) = E[1A] = P(A).

In general, we will write the expectation of X on the event A as

E[X;A] =

∫
A

X(ω)dP(ω) =
∫
Ω

X(ω)1A(ω)dP(ω) = E[X1A].

▶ Theorem 1.7 (properties of expectation).

(1) Linearity. If X and Y are integrable random variables, then the linear combination αX + βY is
integrable, and

E[αX + βY ] = αE[X] + β E[Y ], α, β ∈ R.

(2) |E[X] | ≤ E[|X |].

(3) Monotonicity. If X ≥ Y , a.s., then E[X] ≥ E[Y ].

(4) If X ≥ 0, a.s., then E[X] ≥ 0 a.s.. Moreover, if E[X] = 0, then X = 0 a.s..

(5) Jensen’s inequality. If X is integrable, and g is a convex function, then

E[g(X)] ≥ g(E[X]).

(6) If X and Y are integrable independent random variables, then XY is integrable, and E[XY ] =
E[X]E[Y ].

▶ Theorem 1.8 (monotone convergence theorem). Let Xn be an increasing sequence of random variables
bounded below by an integrable random variable Y and converges to a random variable X, that is Y ≤ Xn

and Xn ↑ X, a.s.. Then,
lim
n→∞

E[Xn] = E[X].

▶ Theorem 1.9 (dominated convergence theorem). Let Xn be a sequence of random variables converging
to a random variable X, a.s.. Suppose that there exists an integrable random variable Y such that
|Xn(ω)| ≤ Y (ω) a.s. for all n ≥ 1. Then

lim
n→∞

E[Xn] = E[X].

▶ Definition 1.10 (conditional expectation). Let X be an integrable random variable and G be a σ-
algebra. A random variable Y is called the conditional expectation of X given G, denoted as Y = E[X | G],
if

(A) Y is G-measurable.

(B) For any event A ∈ G, we have

E[Y 1A] = E[E[X | G]1A] = E[X1A].

▶ Proposition 1.11 (properties of conditional expectation).

(1) Linearity. E[αX1 + βX2 | G] = αE[X1 | G] + β E[X2 | G] for α, β ∈ R.

(2) If X ≥ 0, a.s., then E[X | G] ≥ 0.

(3) Conditional mean formula. E[E[X | G]] = E[X], namely, one can freely introducing σ-algebra using
expectations.
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1 PRELIMINARIES 1.2 Gaussian Random Vectors

(4) Taking out what is known. If Z is G-measurable random variable, then

E[ZX | G] = Z E[X | G].

In particular, E[Z | G] = Z.

(5) Role of independence. If X is independent of G, then E[X | G] = E[X].

(6) Tower property. If G1 is another σ-algebra such that G1 ⊂ G, then

E[E[X | G] | G1] = E[X | G1].

In particular, if G1 = {∅, Ω}, then we obtain the condition mean formula (3).

(7) Conditional Jensen’s inequality. If X is integrable and g is a convex function, then

E[g(X) | G] ≥ g(E[X | G]).

▶ Lemma 1.12 (Independence lemma). Let X and Y be random variables on (Ω,F ,P). Let X and Y
be σ-algebras. Assume that X is X measurable, Y is Y measurable and X is independent of Y. Then, for
all bounded functions Φ(·, ·),

E[Φ(X,Y ) | X ] = E[Φ(x, Y )]|x=X = E[Φ(X,Y ) | X].

1.2 Gaussian Random Vectors

A continuous random variable W is defined to have standard normal distribution if its density is given by

fW (w) =
1√
2π

exp

(
−w2

2

)
, w ∈ R.

A random variable X = σW + µ for arbitrary µ and σ ≥ 0 is defined to have normal distribution if its
density is given by

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

we say X is a Gaussian (normal) random variable and denote X ∼ N(µ, σ2).

▶ Theorem 1.13. Let X ∼ N(µ, σ2), then

(a) The moment generating function of X is given by

MX(t) := E[etX ] = eµt+σ2t2/2, t ∈ R.

(b) The characteristic function of X is given by

φX(t) := E[eitX ] = eiµt−σ2t2/2, t ∈ R.

(c) Mean and variance of the X are given by

E[X] = µ, V[X] = σ2.

Using the moment generating functions, one can show that the sum of independent normal random
variables in normal as well. Namely, let

Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n,

then for r1, . . . , rn ∈ R,

r1X1 + · · ·+ rnXn ∼ N(r1µ1 + · · ·+ rnµn, r
2
1σ

2
1 + · · ·+ r2kσ

2
k).

Consider a vector W = (W1, . . . ,Wn)
T , where Wi are i.i.d. random variables. Let w = (w1, . . . , wn)

T ,
then W is a multivariate normal (Gaussian) distributed if its probability density function is

fW (w) =
1

(2π)n/2
exp

(
−wTw

2

)
.
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1 PRELIMINARIES 1.2 Gaussian Random Vectors

▶ Definition 1.14. A random vector X = (X1, . . . , Xn)
T has normal (Gaussian) distribution if it can

be represented as
X = AW + µ,

where W = (W1, . . . ,Wm)T is a vector of i.i.d. standard normal random variables, µ = (µ1, . . . , µn)
T is

a real vector and A = (aij)1≤i≤n, 1≤j≤m is a matrix of size n×m.

▶ Theorem 1.15. Let X = (X1, . . . , Xn)
T be a zero-mean Gaussian vector. Let Y = (Y1, . . . , Ym)T =

BX for some B ∈ Rm×n. Then Y is a zero-mean Gaussian vector as well.

An important characterization of a Gaussian vector X = (X1, . . . , Xn)
T is its covariance matrix

defined as
Cov(X) = (Kij)

n
i,j=1, Kij = E[(Xi − E[Xi])(Xj − E[Xj ])].

Therefore we can rewrite the matrix K as

K = E[(X − E[X])(X − E[X])T ].

If X = AW + µ where W = (W1, . . . ,Wn)
T and Wi are i.i.d. N(0, 1) random variables, then the

covariance of X is K = AAT .

▶ Theorem 1.16. Let X be a Gaussian vector with the mean vector µ = (µ1, . . . , µn)
T , and the

covariance matrix K ∈ Rn×n. Then the moment generating function of X is given by

MX(t) = exp

(
tTµ+

tTKt

2

)
, t = (t1, . . . , tn)

T ∈ Rn,

and the characteristic function of X is given by

φ(θ) = exp

(
iθµ− θTKθ

2

)
, θ = (θ1, . . . , θn)

T ∈ Rn.

▶ Theorem 1.17. Let Z = AW + µ, where W has standard multivariate normal distribution with
nonsingular covariance matrix K. Then the probability density function of Z is given by

fZ(z) =
1

(2π)n/2
√
det(K)

exp

(
−1

2
(z − µ)TK−1(z − µ)

)
, z = (z1, . . . , zn)

T .

▶ Proposition 1.18. Let X = (X1, . . . , Xn)
T be a Gaussian vector. Then Xi are independent with

each other if and only if they are uncorrelated. Namely, Cov(Xi, Xj) = 0 for any i ̸= j.

▶ Proposition 1.19 (Gaussian vector). Let Z = (Z1, . . . , Zn)
T be a random vector. Then Z is a

Gaussian vector if and only if
∑n

i=1 aiZi has normal distribution for any ai ∈ R.

▶ Proposition 1.20. Suppose {Xn}∞n=1 is a sequence of Gaussian random vectors and limn→∞ Xn = X,
a.s.. If

µ := lim
n→∞

E[Xn], K := lim
n→∞

Cov(Xn)

exists. Then, X is Gaussian with mean µ and covariance matrix K.
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2 THE BROWNIAN MOTION

2 The Brownian Motion

2.1 Stochastic Processes

▶ Definition 2.1. Let T be a set, (E, E) be a measurable set. A stochastic process indexed by T taking
its values on (E, E) is a collection of measurable mappings X = (Xt)t∈T from a common probability
space (Ω,F ,P) to (E, E). The space (E, E) is called a state space.

Most of the time, the measurable space (E, E) = (R,B(R)), then X = (Xt)t∈T is a collection of
random variables Xt. When (E, E) = (Rd,B(Rd)), then the measurable mappings Xt are random
vectors. The set T may be thought as time.

T = R+ continuous time stochastic process,

T = N = {1, 2, . . . , } discrete time stochastic process.

▶ Definition 2.2 (law of stochastic process). The law of the stochastic process X is the probability
measure

PX = P ◦X−1 on (RT ,B(RT )).

▶ Definition 2.3 (version). The processes X and X ′ defined on probability space (Ω,F ,P) and
(Ω′,F ′,P′) having the same state space (E, E) are called versions of each other if for any finite sequences
t1, . . . , tn and sets A1, . . . , An ∈ E ,

P(Xt1 ∈ A1, . . . , Xtn ∈ An) = P′(X ′
t1 ∈ A1, . . . , X

′
tn ∈ An).

2.2 Definition of Brownian Motion

▶ Definition 2.4 (Brownian motion). A stochastic process B = (Bt)t≥0 defined on a probability space
(Ω,F ,P) is called a Brownian motion process or a Wiener process if B0 = 0 a.s. and

1. The mapping t 7→ Bt is continuous from R+ to R.

2. B has stationary increments, i.e.

Bt+r −Br
law
= Bt for any t, r ≥ 0.

3. B has independent increments, i.e.

Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1

are independent random variables for any choice of 0 ≤ t0 < t1 < · · · < tn with n ≥ 1.

4. Bt
law
= N(0, σ2t) for any t > 0, where σ > 0 is given and fixed constant.

▶ Remark. It can be shown using characteristic functions that the conditions 1, 2, 3 imply 4.

▶ Remark. If σ2 = 1 in 4, then B is said to be a standard Brownian motion.

▶ Theorem 2.5. Standard Brownian motion exists.

▶ Definition 2.6 (Gaussian process). A stochastic process Y = (Yt)t≥0 is called a Gaussian process if
for all 0 ≤ t1 < t2 < · · · < tn, the vector (Yt1 , Yt2 , . . . Ytn) is a Gaussian vector.

Based on the Gaussian process, we have another characterization of a Brownian motion.

▶ Theorem 2.7. A process B = (Bt)t≥0 is a Brownian motion if and only if

(a) B is a Gaussian process.

(b) t → Bt is continuous.

(c) E[Bt] = 0.

(d) Cov(Bt, Bs) = σ2(t ∧ s), for t, s ≥ 0.
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2 THE BROWNIAN MOTION 2.3 Properties of Brownian Motion

▶ Example 2.8.

1. For x ∈ R, the process Xx
t = x+Bt is called the Brownian motion started at x.

2. More generally, the general Brownian motion process X = (Xx
t )t≥0, defined as Xx

t = µt + σBt

is called Brownian motion with drift started at x. Using Theorem 1.13 one can obtains Xt ∼
N(x+ µt, σ2t).

2.3 Properties of Brownian Motion

▶ Theorem 2.9 (invariance properties of SBM). Let B = (Bt)t≥0 be a standard Brownian motion
defined on (Ω,F ,P). Then each of the following processes is a standard Brownian motion as well enum

(1) Renewal Property. For a fixed T > 0,

(BT+t −BT )t≥0.

(2) Time-reversal. For a fixed T > 0,
(BT−t −BT )t∈[0,T ].

(3) Reflection property.
(−Bt)t≥0.

(4) Time-inversion.

(tB1/t)t≥0 =

{
tB1/t t ≥ 0,

0 t = 0.

(5) Brownian scaling. For fixed ρ > 0, (
Bρt√
ρ

)
t≥0

.

▶ Proposition 2.10 (law of large number of SBM). If B = (Bt)t≥0 is a standard Brownian motion
defined on (Ω,F ,P), then

lim
t→∞

Bt

t
= 0, a.s..

▶ Theorem 2.11 (the law of iterated logarithm for BM). If B = (Bt)t≥0 is a SBM defined on (Ω,F ,P),
then

lim sup
t→∞

Bt√
2t log log t

= 1, a.s.,

lim inf
t→∞

Bt√
2t log log t

= −1, a.s.,

lim sup
t→0

Bt√
2t log log(1/t)

= 1, a.s.,

lim inf
t→0

Bt√
2t log log(1/t)

= −1, a.s..

▶ Proposition 2.12 (SBM is nowhere differentiable). Let B = (Bt)t≥0 be a SBM defined on (Ω,F ,P).
Then there exist Z ∈ F with P(Z) = 0 such that for each ω ∈ Ω \ Z, the function t 7→ Bt(ω) is nowhere
differentiable on R+.
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3 CONTINUOUS MARTINGALES

3 Continuous Martingales

▶ Definition 3.1. A filtration on the measurable space (Ω,F) is an increasing family (Ft)t≥0 of sub-σ-
algebras of F . For each t, we have a σ-algebra Ft and Fs ⊂ Ft for s < t. A measurable space (Ω,F)
with a filtration (Ft)t≥0 is said to be a filtered space.

▶ Definition 3.2. A stochastic process X = (Xt)t≥0 on (Ω,F) is adapted to the filtration (Ft)t≥0 if Xt

is Ft measurable for each t ≥ 0.

Then, any process X is adapted to its natural filtration

FX
t := σ(Xs, s ≤ t).

Consider an supplementary filtration

Ft+ =
⋂
s<t

Ft.

▶ Definition 3.3 (right-continuous filtration). If Ft = Ft+, then the filtration is called right-continuous.

▶ Definition 3.4 (martingale). A stochastic process X = (Xt)t≥0 is called a martingale with respect to
the filtration (Ft)t≥0 if

(1) X is adapted to (Ft)t≥0.

(2) Xt is integrable for all t ≥ 0, i.e. E[|Xt |] < ∞.

(3) For all 0 ≤ s ≤ t,
E[Xt | Fs] = Xs.

▶ Definition 3.5 (stopping time). A mapping τ : Ω → [0,∞] is called a stopping time with respect to a
filtration (Ft)t≥0 if for every t ≥ 0,

{τ ≤ t} ∈ Ft.

Based on the stopping time, we have the corresponding σ-algebra, Fτ ,

Fτ := {A ∈ F | A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0} .

A stopping time may be thought of as the first time some physical event happens.

(1) Let X = (Xt)t≥0 be a continuous process and let

DA := inf{t ≥ 0 | Xt ∈ A},

where A is a closed set. Then DA is a stopping time with respect to the natural filtration (FX
t )t≥0.

(2) Let X = (Xt)t≥0 be a continuous process and let

TA := inf{t ≥ 0 | Xt ∈ A},

where A is an open set. Then TA is a stopping time with respect to the filtration (FX
t+)t≥0.

▶ Theorem 3.6 (Doob’s Optional Sampling Theorem). Let X = (Xt)t≥0 be a continuous martingale.
If X is uniformly integrable, then for any stopping time τ

Xτ = E[X∞ | Fτ ].

In particular, E[|Xτ |] < ∞ and E[Xτ ] = E[X0]. Moreover, if σ < τ a.s. is another stopping time, then

E[Xτ | Xσ] = Xσ a.s..

▶ Theorem 3.7. Let X be a continuous martingale and τ be a stopping time with respect to (Ft)t≥0.
Then the stopped process Xτ := (Xt∧τ )t≥0 is a martingale with respect to the same filtration.

9



3 CONTINUOUS MARTINGALES 3.1 Martingales Consisting of Brownian Motions

▶ Theorem 3.8 (Doob’s maximal inequality). Let X = (Xt)t≥0 be a continuous martingale such that
E[|Xt |p] < ∞, t ≥ 0 for some p ≥ 1. Then for every T and λ > 0, we have

P
(

max
0≤t≤T

|Xt | ≥ λ

)
≤ E[|XT |p]

λp
,

and if p > 1,

E
[
max
0≤t≤T

|Xt |p
]
≤
(

p

p− 1

)p

E[|XT |p].

▶ Theorem 3.9 (Doob’s convergence theorem). Let X = (Xt)t≥0 be a uniformly integrable continuous
martingale. Then there exist a limit,

X(ω) = lim
t→∞

Xt(ω).

3.1 Martingales Consisting of Brownian Motions

▶ Remark (independence). For processes (Xt)t∈I and (Yt)t∈J , the corresponding σ-algebra σ(Xt, t ∈ I)
and σ(Yt, t ∈ J) are generated by the π-systems of sets

{Xt1 ≤ x1, . . . , Xtn ≤ xn} , {Ys1 ≤ y1, . . . , Ysn ≤ ym}

where t1, . . . , tn ∈ I, s1, . . . , sm ∈ J , and x1, dots, xn, y1, . . . , ym ∈ R. Then the process X and Y are
independent if and only if the random vectors

(Xt1 ≤ x1, . . . , Xtn ≤ xn), (Ys1 ≤ y1, . . . , Ysn ≤ ym)

are independent for any t1, . . . , tn ∈ I and s1, . . . , sm ∈ J .

▶ Lemma 3.10 (Markov property of SBM). Let B = (Bt)t≥0 be a standard Brownian motion. Fix
T > 0 and define W = (Wt)t≥0, where Wt := Bt+T −BT . Then W is a standard Brownian motion and
it is independent of FB

T . In particular Bt −BT is independent of FB
T for all t > T .

▶ Example 3.11.

(1) Let B = (Bt)t≥0 be a standard one-dimensional Brownian motion. Then B is a martingale with
respect to the natural filtration FB

t .

(2) The following processes constructed from one-dimensional Brownian motion are martingales

(B2
t − σ2t)t≥0,

(
exp

(
λBt −

λ2σ2

2
t

))
t≥0

, λ ∈ R.

(3) For any convex function φ, provided E[|φ(Bt) |] < ∞ for all t ≥ 0, the process (φ(Bt))t≥0 is a
submartingale.

▶ Theorem 3.12. Let f(t, x) be a function on R× Rd which is continuously differentiable one in t and
twice in x and satisfies the following estimate

| f(t, x) |+
∣∣∣∣∂f(t, x)∂t

∣∣∣∣+ d∑
j=1

∣∣∣∣∂f(t, x)∂xj

∣∣∣∣+ d∑
j,k=1

∣∣∣∣∂2f(t, x)

∂xj∂xk

∣∣∣∣ ≤ KeK(t+| x |)

for some K > 0. Let B = (Bt)t≥0 be a standard d-dimensional Brownian motion started at a fixed point
B0. Then

Mt = f(t, Bt)− f(0, B0)−
∫ t

0

Lf(r,Br)dr

is a martingale, where

Lf(t, x) =
∂f(t, x)

∂t
+

1

2
∆f(t, x).

10



3 CONTINUOUS MARTINGALES 3.2 Wald’s Identities

3.2 Wald’s Identities

The following result is an corollary from the optional stopping theorem applied on the Brownian motion.

▶ Theorem 3.13 (Wald’s identities). Let B = (Bt)t≥0 be a Brownian motion started at x and let τ be
a stopping time. Then

E[τ ] < ∞ =⇒ E[B2
τ ] < ∞, E[Bτ ] = x, E[B2

τ ]− x2 = E[τ ].

The following corollary is an application of Wald’s identities.

▶ Corollary 3.14. Let a < x < b and B = (Bt)t≥0 be a standard Brownian motion started at x. Let

τa := inf{t ≥ 0 : Bt = a}, τb := inf{t ≥ 0 : Bt = b}, τa,b := τa ∧ τb.

Then, we have

P(τb < τa) =
x− a

b− a
, P(τa < τb) =

b− x

b− a
, E[τa,b] =

a2(b− x) + b2(x− a)

(b− a)
− x2.

11



4 MARKOV PROCESS

4 Markov Process

In this section, we will discuss the Markov processes, (strong) Markov property and prove that the
Brownian motion is a strong Markov process.

4.1 Markov Property

We have shown that if we fixed time s, then the increment of the Brownian motion (B(t) − B(s))t≥s

does not depend on the process (Bv)0≤v≤s. That is

B(t) = (B(t)−B(s))︸ ︷︷ ︸
⊥FB

s

+ B(s)︸︷︷︸
FB

s measurable

This property is called the Markov property.

▶ Definition 4.1. A stochastic process X = (Xt)t≥0 on a state space (E, E) is called a Markov process if

P(Xt ∈ B | FX
s ) = P(Xt ∈ B | Xs), 0 ≤ s ≤ t, ∀B ∈ E (MP1)

(i.e. B is E measurable). If (Ft)t≥0 is a filtration with FX
t ⊂ Ft for t ≥ 0, then X is a Markov process

with respect to (Ft)t≥0 if (MP1) holds with FX
s replaced by Fs.

This definition means that the future behavior of the Markov process, given the entire past, depends
only on the present state of the process.

One can use standard arguments of conditional expectation shows that (MP1) is equivalent to one of
the following conditions

E[f(Xt) | FX
s ] = E[f(Xt) | Xs], 0 ≤ s ≤ t, f is measurable and bounded. (MP2)

P(B | Fs) = P(B | Xs), s ≥ 0, B ∈ σ(Xt, t ≥ s). (MP3)

E[Y | Fs] = E[Y | Xs], Y is bounded and σ(Xt, t ≥ s) measurable. (MP4)

▶ Definition 4.2 (transition probability). When (E, E) is “nice” measurable space (for example Rd),
then for any t ≥ s, there exist a version Ps,t(x,B) of P(Xt ∈ B | Xs = x) such that

1. For any x ∈ E, B → Ps,t(x,B) is a probability measure on E .

2. For any B ∈ E , x → Ps,t(x,B) is E measurable.

We will call Ps,t(x,B) a set of transition probabilities for the process.

Using Ps,t(x,B) we obtain
P(Xt ∈ B | Xs) = Ps,t(Xs, B).

and hence (MP1) can be rewritten as follows

P(Xt ∈ B | FX
s ) = Ps,t(Xs, B). (MP5)

▶ Definition 4.3 (initial distribution). A measure π defined by π(B) = P(X0 ∈ B) is called the initial
distribution of the process. If the initial distribution of a Markov process X is π, we will write Pπ. In case
π is degenerate distribution at x, that is P(X0 = x) = 1, we will write Px.

The initial distribution and transition probabilities allows us to find a finite-dimensional distributions
of the Markov process.

▶ Proposition 4.4. Let X = (Xt)t≥0 be a Markov process on a state space (E, E) with transition
probabilities Ps,t and the initial distribution π. Then, for any n ≥ 1, B0, . . . , Bn ∈ E, and 0 = t0 < t1 ≤
t2 ≤ · · · ≤ tn, we obtain the finite dimensional distribution of a Markov process X as follows

P(X0 ∈ B0, Xt1 ∈ B1, . . . , Xtn ∈ Bn)

=

∫
B0

π(dx0)

∫
B1

Pt0,t1(x0,dx1)

∫
B2

Pt1,t2(x1,dx2) · · ·
∫
Bn

Ptn−1,tn(xn−1,dxn).

12



4 MARKOV PROCESS 4.2 Homogeneous Markov Process

A special case of the Proposition 4.4 will be n = 2. Let 0 ≤ s < t < u and B be a measurable set, we
have

Ps,u(Xs, B) = P(Xu ∈ B | Xs) Definition

= P(Xu ∈ B | FX
s ) Markov Property

= E[P(Xu ∈ B | FX
t ) | FX

s ] Tower property of conditional probability

= E[P(Xu ∈ B | Xt) | Xs] Markov Property

= E[Pt,u(Xt, B) | Xs] =

∫
E

Ps,t(Xs,dy)Pt,u(y,B).

Taking Xs = x, we have the Chapman-Kolmorogov equation

Ps,u(x,B) =

∫
E

Ps,t(x,dy)Pt,u(y,B). (4.1)

Given a Markov process, we can find its initial distribution and transition probabilities. However,
how we obtain a Markov process? It is sufficient to obtain a Markov process by specifying the
initial distribution and the set of transition probabilities and satisfies the C-K equation (4.1).

▶ Definition 4.5. The collection of functions

{Ps,t(x,B), 0 ≤ s < t < ∞, x ∈ E, B ∈ E}

is called a set of Markov transition probabilities if it satisfies the conditions in the Definition 4.2, and the
C-K equation holds, i.e.

Ps,u(x,B) =

∫
E

Ps,t(x, dy)Pt,u(y,B), 0 ≤ s < t < u, x ∈ E, B ∈ E .

Now given a family of Markov transition probabilities we can construct a Markov process with these
transition probabilities.

▶ Proposition 4.6. Given a set of Markov transition probabilities and initial distribution function π on
(E, E). One can construct a Markov process X = (Xt)t≥0 on (E, E) with these transition probabilities
by specifying its finite-dimensional distributions as follows: for any n ≥ 1, B0, · · · , Bn ∈ E, and
t1 ≤ t2 ≤ · · · ≤ tn,

P(X0 ∈ B0, Xt1 ∈ B1, · · ·Xtn ∈ Bn) =∫
B0

π(dx0)

∫
B1

Pt0,t1(x0,dx1)

∫
B2

Pt1,t1(x1,dx2) · · ·
∫
Bn

Ptn−1,tn(xn−1,dxn).

4.2 Homogeneous Markov Process

The Markov transition probabilities are called homogeneous if for any s ≤ t, x ∈ E, and B ∈ E , we have

Ps,t(x,B) = P0,s−t(x,B) (4.2)

Then the Chapman-Kolmorogov equation (4.1) for homogeneous Markov transition probabilities can
be written as

Ps+t(x,B) =

∫
E

Ps(x, dy)Pt(y,B) (4.3)

We can then define a family of operators (Pt)t≥0, where each operator acts on a bounded measurable
function f as follows

Ptf(x) =

∫
E

Pt(x,dy)f(y) = Ex[f(Xt)], x ∈ E (4.4)

Intuitively, this operator represents: where will be the underlying process f(X) locate after time t if the
process start at x.

13



4 MARKOV PROCESS 4.3 Examples of Markov Process

Then the Chapman-Kolmorogov equation (4.1) is equivalent as

Ps+tf(x) =

∫
E

Ps+t(x, dz)f(z) Definition of operator

=

∫
E

Ps(x,dy)

∫
E

Pt(y,dz)f(z) Using (4.3)

=

∫
E

Ps(x,dy)Ptf(y)

= PsPtf(x),

which can be written as follows
Ps+t = PsPt. (4.5)

If a Markov transition probability Pt(x,B) can be represented as

Pt(x,B) =

∫
B

pt(x, y) dy

for some function pt(x, y) and for all t > 0, x ∈ R and B ∈ B(R), then pt(x, y) is called the transition
density.

4.3 Examples of Markov Process

▶ Theorem 4.7 (SBM is a Markov process). Let B = (Bt)t≥0 be a standard Brownian motion defined
on (Ω,F ,P). Then B is a Markov process with respect to its natural filtration (FB

t )t≥0.

Proof. Let f be a bounded measurable function and fix 0 ≤ s < t. We will verify (MP2). Note that

E[f(Bt) | FB
s ] = E[f(Bt −Bs +Bs) | FB

s ].

By the Markov property of the Brownian motion (Lemma 3.10), Bt −Bs is independent of FB
s . Hence

we can apply independent Lemma 1.12 by treating Y = Bt −Bs, X = Bs and Φ(x, y) = f(x+ y), and
we have

E[f(Bt) | FB
s ] = E[Φ(Bt −Bs, Bs) | FB

s ]

= E[Φ(Bt −Bs, Bs) | Bs]

= E[f(Bt) | Bs].

▶ Example 4.8 (SBM is homogeneous Markov process). It follows from Theorem 4.7 that one can take

Pt(x,A) = P(x+Bt ∈ A) =

∫
y: x+y∈A

1√
2πt

e−y2/(2t) dy =

∫
B

pt(x, y) dy

as transition probabilities. Here

pt(x, y) =
1√
2πt

exp

(
− (x− y)2

2t

)
, x, y ∈ R, t > 0 (4.6)

is the transition density of the standard Brownian motion.

It is clear that it satisfies the conditions in the Definition 4.2. Moreover, from Theorem 4.7,

P(Bt ∈ A | Bs) = P(x+Bt −Bs ∈ A | Bs = x)|x=Bs
= Pt−s(Bs, A).

Remain to check the Chapman-Kolmorogov equation holds,

Ptf(x) =

∫ ∞

−∞
Pt(x, dy)f(y) =

∫ ∞

−∞
P(x+Bt ∈ dy)f(y) = E[f(x+Bt)].

14



4 MARKOV PROCESS 4.4 Strong Markov Property of Brownian Motion

Then,

Ps(Ptf(x)) = Ps (E[f(x+Bt)])

= Ps (E[f(x+Bt+s −Bs)])

= E[f(x+Bt+s +Bs −Bs)]

= E[f(x+Bt+s)] = Pt+sf(x).

Hence, the transition probabilities satisfies 1) Definition 4.2, 2) homogeneous condition (4.2), 3) Chapman-
Kolmorogov equation. We can conclude that, B is a homogeneous Markov process with transition density
given by (4.6).

▶ Example 4.9 (examples of Markov process). The following processes are Markov processes,

1. Brownian motion with a drift (µt + σBt)t≥0, where B = (Bt)t≥0 is a Brownian motion. It is a
continuous Markov process.

2. Ornstein-Uhlenbeck processes, both stationary (Vt)t≥0, where

Vt =
σ√
2β

e−βtBe2βt , t ≥ 0,

and non-stationary (Vt)
(v)
t≥0, where

V
(v)
t = ve−βt +

σ√
2β

e−βtBe2βt−1.

Here B = (Bt)t≥0 is a Brownian motion. Vt and V
(v)
t have the same transition probabilities, but

different initial distributions. Ornstein-Uhlenbeck process is continuous.

3. Geometric Brownian motion S = (St)t≥0 defined as

St = S0 exp(µt+ σBt), t ≥ 0,

where B = (Bt)t≥0 is a standard Brownian motion. Geometric Brownian motion is a continuous
Markov process.

4. Generally, If X = (Xt)t≥0 be a Markov process and f is a bijection measurable function. Then
Y = (Yt)t≥0 := (f(Xt))t≥0 is a Markov process as well.

4.4 Strong Markov Property of Brownian Motion

Markov property (Lemma 3.10) ensures that for any fixed time T , the process (Bt+T −Bt)t≥0 is
a Brownian motion and independent of FB

T . Now we will show that it is possible to replace the
fixed time T with a stopping time τ .

▶ Lemma 4.10 (discrete to continuous stopping times). Given a stopping time τ : Ω → [0,∞] with
respect to a filtration (Ft)t≥0 define

τn =

{
j2−n if (j − 1)2−n ≤ τ < j2−n, j = 1, 2, . . . ,

∞ if τ = ∞

for n ≥ 1. Then

(a) Each τn is a stopping time with respect to (Ft+)t≥0.

(b) τn ↓ τ as n → ∞.

(c) Fτ+ = ∩h>0Fτ+h.

▶ Theorem 4.11 (strong Markov property of SBM). Let B = (Bt)t≥0 be a standard Brownian motion
and τ < ∞ a.s.. Then W = (Wt)t≥0, where Wt = Bτ+t − Bτ is a standard Brownian motion as well.
Moreover, W is independent of FB

τ+.
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4 MARKOV PROCESS 4.5 Reflection Principal

Proof. We would like to prove the independent using characteristic functions. Let τn be a sequence of
stopping times constructed from τ in Lemma 4.10. For any 0 ≤ s < t, θ ∈ R and C ∈ Fτ+, we have

E[eiθ(Bτn+t−Bτn+s)1C ] =

∞∑
j=1

E[eiθ(Bj2−n+t−Bj2−n+s)1τn=j2−n1C ]

=

∞∑
j=1

E
[
eiθ(Bj2−n+t−Bj2−n+s) 1(j−1)2−n≤τ<j2−n1C︸ ︷︷ ︸

Fj2−n measurable

]

(Markov property. No randomness) =

∞∑
j=1

E[eiθ(Bj2−n+t−Bj2−n+s)]P({τn = j2−n} ∩ C)

= E[eiθBt−s ]

∞∑
j=1

P({τn = j2−n} ∩ C)

= E[eiθBt−s ]P (C).

Now letting n → ∞ and using the continuity of Brownian motion with the DCT, we obtain

E[eiθ(Bτ+t−Bτ+s)1C ] = E[eiθBt−s ]P(C).

Similar calculation show that the same statement is true for finitely many increments. Namely, for
0 = t0 < t1 < · · · < tn and θ, . . . , θn ∈ R,

E[ei
∑n

j=1 θj(Bτ+tj
−Bτ+tj−1

)1C ] =

n∏
j=1

E[eiθjBtj−tj−1P(C)].

This shows that the increments of W are independent of each other and of Fτ+. Also, this shows that the
increments of W have the same distribution as the increment of B. Finally, the continuity of W follows
from that of B. We can then conclude that W is a Brownian motion and the process W is independent
of Fτ+.

4.5 Reflection Principal

▶ Theorem 4.12 (reflection principal of SBM). Fix a ∈ R. Let B = (Bt)t≥0 be a SBM and

τa = inf{t > 0 | Bt = a}

be the first time which the Brownian motion B hits a. Then the process B̃ = (B̃t)t≥0

B̃t =

{
Bt, t < τa,

2a−Bt, t ≥ τa

is a standard Brownian motion.

Proof. Consider the stochastic process Z = (Zt)t≥0 and Y = (Yt)
τa
t=0 where

Yt := Bt, 0 ≤ t ≤ τa, Zt := Bt+τa −Bτa = Bt+τa − a.

Since τa is a stopping time, therefore Zt is a SBM independent of Fτa+, in particular, independent of Y .

By the reflection property, −Z is also a SBM independent of Y . Hence (Y,Z)
law
= (Y,−Z). The map

ϕ(Y, Z) 7→ (YtIt≤τa + (a+ Zt−τa)I(t > τa))t≥0

produces a continuous process, which have the same law as ϕ(Y,−Z). But ϕ(Y,Z) = B and ϕ(Y,−Z) = B̃.
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4 MARKOV PROCESS 4.6 Strong Markov Processes and Feller Processes

▶ Corollary 4.13. Let B = (Bt)t≥0 be a SBM. Let St := sups≤t Bs be the running supremum of B.
Then for all a > 0 and t > 0,

P(St ≥ a) = P(τa ≤ t) = 2P(Bt ≥ a) = P(|Bt | ≥ a).

Proof. Notice that

P(St ≥ a) = P(St ≥ a,Bt > a) + P(St ≥ a,Bt ≤ a)

= P(Bt > a) + P(St ≥ a,Bt ≤ a).

Let B̃ be the process defined in Theorem 4.12, and put S̃t = sups≤t B̃s. Since B and B̃ have the same
distribution, one can see

P(St ≥ a,Bt ≤ a) = P(St ≥ a, B̃t ≤ a).

By definition of B̃, on the event {t < τa} = {St < a} (Bt hasn’t meet a), the trajectories of B and B̃
coincide. Hence,

P(St ≥ a,Bt ≤ a) = P(St ≥ a, B̃t ≤ a)

= P(τa ≤ t, 2a−Bt ≤ a)

= P(St ≥ a,Bt ≥ a) = P(Bt ≥ a).

Then
P(τa ≤ t) = P(St ≥ a) = P(Bt > a) + P(Bt ≥ a) = 2P(Bt ≥ a) = P(|Bt | ≥ a),

where the last equality follows from the symmetry of the SBM.

4.6 Strong Markov Processes and Feller Processes

The following definition extend the Definition 4.1 to stopping time τ .

▶ Definition 4.14 (strong Markov process). Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space. An
adapted stochastic process X = (Xt)t≥0 on the state space (E, E) is called a strong Markov process with
respect to (Ft)t≥0 if

P(Xτ+s ∈ B | Fτ ) = P(Xτ+s ∈ B | Xτ ) = Ps(Xτ , B), (4.7)

on {τ < ∞} for transition probability Pt(x,B), all stopping times τ , s ≥ 0 and B ∈ E .
▶ Remark. The state space E that we will consider will usually be either Rd or some nice subset of Rd.

The meaning of the strong Markov property is similar to the Markov property. The behavior of the
Markov process after stopping time depends only on the position of the process at the stopping time and
does not depend on the behavior of the process before stopping time.

Recall that for a measurable function f and transition probabilities Pt(x,B) of a time homogeneous
Markov process,

Ptf(x) =

∫
E

Pt(x,dy)f(y) = E[f(Xt) | X0 = x] = Ex[f(Xt)].

Denote by Cb(E) the set of continuous and bounded functions on E. We can further show that a process
X = (Xt)t≥0 is a strong Markov process if and only if for all f ∈ Cb(E),

E[f(Xτ+s) | Fτ ] = Psf(Xτ ). see (MP2). (4.8)

▶ Definition 4.15 (Feller property). A Markov process X = (Xt)t≥0 with transition probabilities Pt is
said to have the Feller property if for any f ∈ Cb(E), and t ≥ 0, the function Ptf ∈ Cb(E). In this case,
we call X a Feller process.

▶ Theorem 4.16. Let X = (Xt)t≥0 be a right-continuous Feller process defined on (Ω,F ,P). Then X
is a strong Markov process with respect to the right-continuous filtration (FX

t+)t≥0. ▶ Markov process +
Feller property = Strong Markov Process
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4 MARKOV PROCESS 4.6 Strong Markov Processes and Feller Processes

Proof. We need to verify (4.7). Let τ be an arbitrary stopping time, s > 0 and f ∈ Cb(E). It is sufficient
to show (4.8). By the definition of conditional expectations, it is sufficient to show that

E[f(Xτ+s)1C ] = E[Psf(Xτ1C)], ∀C ∈ Fτ+. (4.9)

Recall the Lemma 4.10, there exist a decreasing sequence of stopping times τn for n ≥ 1 such that τn ↓ τ .
Then,

E[f(Xτn)1C ] =

∞∑
j=1

E[f(Xj2−n+s) 1τn=j2−n1C︸ ︷︷ ︸
Fj2−n measurable

]

(conditional mean formula) =

∞∑
j=1

E[1τn=j2−n1C E[f(Xj2−n+s) | Fj2−n ]]

(Markov property) =

∞∑
j=1

E[1τn=j2−n1CPsf(Xj2−n)]

= E[Psf(Xτn)1C ].

As n → ∞, since τn ↓ τ , process X is right-continuous and f is continuous, therefore f(Xτn+s)1C →
f(Xτ+s)1C . Similarly argument can be applied by noticing Psf is continuous by Feller property, hence
Psf(Xτn)1C → Psf(Xτ )1C . Therefore, since f and Psf are both bounded, hence we use DCT to obtain
(4.9).

▶ Corollary 4.17 (SBM is strong Markov Process). Let B = (Bt)t≥0 be a SBM. Then B is a strong
Markov process with respect to the filtration FB

t+.

Proof. SBM is a Markov process, therefore, it is sufficient o show that SBM satisfies the Feller property
and apply Theorem 4.16. For a fixed f ∈ Cb(R), we need to show that Ptf ∈ Cb(R) for any fixed t. To
prove that Ptf(x) is continuous at x, note that

f(y +Bt) → f(x+Bt),

as y → x. Also supy∈R| f(y) | < K < ∞ for some K. Hence the DCT implies that as y → x,

Ptf(y) = E[f(y +Bt)] → E[f(x+Bt)] = Ptf(x),

and since x is arbitrary, therefore Ptf ∈ Cb(R).

▶ Definition 4.18 (shift operator). Define a family of measurable transformations θt, t ≥ 0, by

Xs(θt(ω)) = Xt+s(ω).

The operators θt are called the shift operator. The shift operator will do nothing but proceed the time
with t unit. Clearly, θt ◦ θs = θt+s and θt is measurable with respect to σ(Xs, s ≥ t) and σ(Xs, s ≥ 0).

Shift operators allow us to reformulate the Markov property in the following way. Let FX
∞ =

σ(∪t≥0FX
t ). Then X = (Xt)t≥0 is a Markov process if and only if for any F∞ measurable bounded Z

such that
Ex[Z ◦ θt | FX

t ] = EXt
[Z], a.s.. (4.10)

More detail see Theorem 2.10 in link.
For a stopping time τ , we can further define a map θτ : Ω 7→ Ω, by

θτ (ω) = θt(ω), if τ(ω) = t.

Then the strong Markov property can also be reformulated as: the process X = (Xt)t≥0 is a strong
Markov process if and only if for any bounded F∞ measurable Z,

Ex[Z ◦ θτ | Fτ ] = EXτ
[Z],

on {τ < ∞} for every stopping time τ , every F∞ measurable Z and all x.
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5 ONE-DIMENSIONAL REGULAR DIFFUSION

5 One-dimensional Regular Diffusion

5.1 Regularity

Let (Ω,F ,Px) be a probability space and let X = (Xt)t≥0 be a continuous strong Markov process with
respect to the filtration FX

t+ with values in the measurable space (I,B(I)), such that Px(X0 = x) = 1 for
some x ∈ I. We will assume that the state space I is an interval in R, which may be closed, open or
semi-open, bounded or unbounded. We set l = inf I ≥ −∞, and r = sup I ≤ +∞.

We will start with description of the behavior of X at an arbitrary point x. The key result is the
zero-one law.

▶ Lemma 5.1 (Blumenthal 0-1 law). The σ-algebra FX
0+ is Px trivial. Namely, Px(A) ∈ {0, 1} for any

A ∈ FX
0+.

Proof. Let A ∈ FX
0+ and B ∈ FX

∞. Then

Px(A ∪B) = Ex[1A · 1B ]

= Ex[1A Ex[1B | FX
0+]]

(Markov property) = Ex[1A EX0 [1B ]]

= Ex[1APx(B)]

= Px(A)Px(B).

Taking B = A, we have Px(A) = (Px(A))2. Hence either Px(A) = 0 or Px(A) = 1.

For x ∈ R, let
τx = inf{t > 0 | Xt ̸= x} (5.1)

be the first time X leaves x. Note that τx is the first hitting time of X to the open set
(−∞, x) ∪ (x,+∞), hence τx ∈ [0,∞] is a stopping time with respect to FX

t+.

By continuity of X,

{τx = 0} =

∞⋂
n=1

{Xs ̸= x for some s ∈ [0, 1/n]}︸ ︷︷ ︸
∈FX

1/n

∈ FX
0+.

Hence Px(τx = 0) = {0, 1} by Lemma 5.1, and therefore

Px(τx > 0) = {0, 1}.

Characterization of Px(τx > 0) and related probabilities.

(1) Px(τx > 0) can be viewed as the probability that we stay at the current position now.

(2) Px(τx = 0) can be viewed as the probability that we exit the current position now.

When Px(τx > 0) = 0, we say that x is instantaneous. When Px(τx > 0) = 1, we say that x is
absorbing. Moreover, define

τ+x = inf{t > 0 : Xt > x}, τ−x = inf{t > 0 : Xt < x},

be respectively the first time X exceed x or become smaller than x. Based on this definition, we can
further classify the instantaneous points into the following categories,

Px(τ
−
x = 0) = 1 P(τ−x = 0) = 0

Px(τ
+
x = 0) = 1

Instantaneous
Regular point

Instantaneous
Lower boundary point

Px(τ
+
x = 0) = 0

Instantaneous
Upper boundary point Absorbing
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.1 Regularity

Next theorem will characterize the behavior of X at non-regular points, i.e. upper or lower boundary
point and the absorbing point.

▶ Lemma 5.2. Let x ∈ I,

(1) Let x is absorbing. If X started at x (or visit x), it stays forever. Namely, Px(τx = ∞) = 1.

(2) If x is a lower (upper) boundary point, then X never goes below (above) x. Namely, Px(τ
−
x = ∞) = 1,

(Px(τ
+
x = ∞) = 1).

Proof. We will prove (1), and (2) can be proved similarly.

Px(τx < ∞) = Px(τx < ∞, τx ◦ θτx
= 0)1

= Ex[1τx<∞1τx◦θτx=0]

= Ex

[
Ex[1τx<∞1τx◦θτx=0 | Fτx+]

]
(Tower property)

= Ex [Ex[1τx=0 ◦ θτx | Fτx+]] (1τx<∞ is Fτx+ measurable)

= Ex

[
1τx<∞ EXτx

[1τx=0]
]

(Strong markov property (4.10))

= Ex[1τx<∞Px(τx = 0)] (continuity of Xt)▶ why continuity?

= Px(τx < ∞)Px(τx = 0)

= 0 by assumption that x is absorbing.

Hence we have proved (1).

Hence we have the following classification for arbitrary point x ∈ I.

For any x ∈ I, it is either absorbing or instantaneous. If x is instantaneous, then it is either an
upper boundary or lower boundary or regular.

▶ Example 5.3. The following examples illustrate the above classification.

(E1) Consider a SBM B = (Bt)t≥0. This is a strong Markov process on I = (−∞,+∞). All points
x ∈ R are regular.

Proof. Let’s fix x ∈ R, then

Px(τ
+
x = 0) = P

⋃
n≥1

(x+Bs) > x, for some s ≤ 1

n


= lim

n→∞
P
(
(x+Bs) > x for some s ≤ 1

n

)
≥ lim

n→∞
P(B1/n > 0) ▶ why? 2 =

1

2
.

By Blumenthal zero-one law, Px(τ
+
x = 0) = {0, 1}, we obtain Px(τ

+
x = 0) = 1. By symmetry

Px(τ
−
x = 0) = 1, and hence x ∈ R is regular.

(E2) Let B = (Bt)t≥0 be a SBM. Consider the reflected Brownian motion X = (Xt)t≥0 given by
Xt = |Bt |. This is a strong Markov process I = [0,+∞). For x ∈ (0,+∞), x is regular. The
boundary is a lower boundary point.

Proof. Indeed, P0(τ
−
0 = 0) = 0 since |Bt | ≥ 0 for any t ≥ 0. However, for the counter part,

Px(τ
+
x = 0) = lim

n→∞
P
(
x+Bs ̸= x for some s ≤ 1

n

)
≥ lim

n→∞
(B1/n ̸= 0) = 1 (5.2)

1If the event τx < ∞ happened, this implies that there exist a finite time t = τx such that Xt ̸= x, then we shift
the whole axis by τx, then clearly, it becomes we leave x at t = 0, namely τx ◦ θτx = 0, since τx exists and finite.

2My guess will be: the event {Bs > 0} for some s ≤ 1/n is much more general than {B1/n > 0}. In fact, for the
former case, we only need to find one s ∈ [0, 1/n], but the latter case require specifically at 1/n.
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.1 Regularity

since for all x ∈ R, it is a regular point for Bt.
3 Hence back to Xt, x is not absorbing, and therefore

it is lower boundary.

(E3) Let B = (Bt)t≥0 be a SBM started at x. Consider the Brownian motion absorbed at the boundary
X = (Xt)t≥0 given by Xt = |Bt∧τ̃0 |, where

τ̃0 := inf {t ≥ 0 : Bt = 0} .

One can show that this is a strong Markov process on [0,∞). For all x > 0, x is regular, and x = 0
is an absorbing point.

(E4) Similarly, we can define X = (Xt)t≥0 absorbed at the boundaries of the interval [−1, 1] by
Xt = |Bt∧τ−1,1

|, where
τ−1,1 =:= inf {t ≥ 0 : Bt ∈ {−1, 1}} .

This is a strong Markov process on I = [−1, 1]. The interval point x ∈ (−1, 1) are regular while the
boundary points x ∈ {−1, 1} are absorbing.

Main assumptions about X = (Xt)t≥0

Denote the hitting time of X by

τy := inf {t > 0 : Xt = y} ,

where inf{∅} = ∞. Clearly, since t → Xt is continuous, then Xτy = y on {τy < ∞}. We now list
three main assumptions:

(R1) The paths of X are continuous.

(R2) X is a strong Markov process with respect to FX
t+ in the sense (4.10).

(R3) X is regular in the sense that
Px(τy < ∞) > 0

for any x ∈ int(I) = (ℓ, r) and any y ∈ I.

▶ Definition 5.4. The process X = (Xt)t≥0 satisfying assumptions (R1), (R2) and (R3) is called a
regular one-dimensional diffusion.

Examples of regular diffusion are Brownian motion (with or without a drift), reflected Brownian
motion and Ornstein-Uhlenbeck process. The points of the regular diffusion are classified as follows.

▶ Lemma 5.5. Let X = (Xt)t≥0 be a regular one-dimensional diffusion with a state space I. Then

(1) The right (left) endpoint of I is either

(P1) not in I, or

(P2) in I and absorbing, or

(P3) in I and is an upper (lower) boundary point.

(2) Each point x ∈ int(I) is regular.

(3) Conversely, suppose that X satisfies (R1) and (R2) in the Definition 5.4. If each interval point of
I is regular and for each endpoint y of I in I, there is an x ∈ int(I) such that Px(τy < ∞) > 0.
Then X is a regular diffusion.

3we now reduce the reflected Brownian motion into a “regular” standard Brownian motion. Let the underlying
process be Bt instead of Xt, then for all x ∈ R, x is regular, i.e. Px(τx = 0) = 1, and this gives the final equality in
(5.2).
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.1 Regularity

The assumption (R3) can be strengthened. For a < b, let J = [a, b] be a closed, infinite, proper
interval included in I. This allows a and b to be endpoints of J in I. Let

τJ = τa,b = inf{t > 0 : Xt ∈ {a, b}} ≤ ∞

be the hitting time of X of either a or b. Note that τJ = τa ∧ τb for x ∈ (a, b) where x is the starting
point of Xt. We start with the following uniform bound.

▶ Lemma 5.6 (bounded the hitting time). There exist K and δ > 0 such that Px(τJ ≤ K) ≥ δ for
x ∈ J .

Proof. Let y = (a+ b)/2. Since X is regular, there exist sufficiently large K > 0 such that,

δ := max (Py(τa ≤ K),Py(τb ≤ K)) > 0. (5.3)

Let the case a ≤ x ≤ y. Then,
τa = τx + τa ◦ θτx on X0 = y.

Hence by strong Markov property,

Py(τa ≤ K) = Py(τx + τa ◦ θτx ≤ K)

≤ Py(τx < ∞, τa ◦ θτx ≤ K)

= Ey[1τx<∞(1τa≤K ◦ θτx)]
= Ey[1τx<∞ Ey[1τa≤K ◦ θτx | Fτx+]]

= Ey[1τx<∞ EXτx
[1τa≤K ]]

= Ey[1τx<∞Px(τa ≤ K)]

= Py(τx < ∞)Px(τa ≤ K)

≤ Px(τa ≤ K).

Hence,
Px(τJ ≤ K) ≥ Px(τa ≤ K) ≥ Py(τa ≤ K) ≥ δ. ▶ not correct. cannot match (5.3).

The other case can be done by symmetry.

▶ Proposition 5.7. The hitting time τJ < ∞ Px a.s.. Moreover, supx Ex[τJ ] < ∞.

Proof. By Lemma 5.6, there exist K and δ > 0 such that

sup
x∈J

Px(τJ > K) ≤ 1− δ < 1.

If τJ > s, we have τJ = s+ τJ ◦ θs, it follows

Px(τJ > nK) = Px(τJ > (n− 1)K, τJ > nK)

= Px(τJ > (n− 1)K, (n− 1)K + τJ ◦ θ(n−1)K > nK).

Since {τJ > (n− 1)K} ∈ FX
(n−1)K+, by the Markov property,

Px(τJ > nK) = Ex[1τJ>(n−1)K(1τJ>K ◦ θ(n−1)K)]

= Ex

[
1τJ>(n−1)K Ex

[
1τJ>K ◦ θ(n−1)K | FX

(n−1)K+

]]
= Ex

[
1τJ>(n−1)K EX(n−1)K

[1τJ>K ]
]

≤ (1− δ)Ex

[
1τJ>(n−1)K

]
= (1− δ)Px(τJ > (n− 1)K).

Iterating this, we obtain

Px(τJ > nK) ≤ (1− δ)Px(τJ > (n− 1)K) ≤ · · · ≤ (1− δ)n,
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.2 Scale function

for every x ∈ J . Using the well known inequality: let X be a non-negative random variable, then

E[X] ≤
∞∑

n=0

P(X ≥ n),

we have

Ex

[τJ
K

]
≤

∞∑
n=0

Px(τJ ≥ nK) ≤
∞∑

n=0

(1− δ)n =
1

δ
,

for all x ∈ J . This shows that

sup
x∈J

Ex[τJ ] ≤
K

δ
< ∞,

as claimed. In particular, it follows that τJ < ∞ Px a.s..

Let X be a one-dimensional regular diffusion. The X can be described in three things

(1) Scale function: describe the diffusion moves to left or right.

(2) Speed measure: the rate at which X leaves some set A.

(3) Boundary behavior.

Moreover, X can be represented as a transformation of BM, where we are transforming space
using the scale function and transforming time using speed measure.

5.2 Scale function

▶ Definition 5.8 (scale function). Let X be a regular diffusion on I. A scale function for X is a
continuous strictly increasing function s : I → R such that a < x < b ∈ I,

Px(τb < τa) =
s(x)− s(a)

s(b)− s(a)
. (5.4)

If s(x) = x is a scale function for X, we say that X is in natural scale.

Aim is to show that for any one-dimensional regular diffusion one can construct a scale function. Fix
a < b, and let J = [a, b] ⊂ I, define

sJ(x) = Px(τb < τa), x ∈ J. (hitting b before hitting a)

Here, the variable is the starting point of the underlying process. Clearly, sJ (a) = 0 and sJ (b) = 1. Also,
for a < x < y < b, by Markov property,

sJ(x) = Px(τy < τa)sJ(y) ≤ sJ(y),

so that sJ(x) is non-decreasing for x from a to b.

▶ Lemma 5.9. The function sJ is continuous and strictly increasing.

▶ Proposition 5.10 (existence of scale function). A regular diffusion X has a scale function. This
function is unique up to an affine transformation, that is, if s̃ : I → R is another strictly increasing
continuous function satisfying

Px(τb < τa) =
s(x)− s(a)

s(b)− s(a)
, x ∈ [a, b] ⊂ I,

then there exist α ̸= 0 and β ∈ R such that s̃(x) = αs(x) + β for all x ∈ I.

Proof. If I = [ℓ, r] is compact, let s(x) = sI(x),

sI(x) = Px(τr < τℓ).
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.2 Scale function

This function is strictly increasing and continuous by Lemma 5.9. To verify that for x ∈ [a, b] ⊂ I = [ℓ, r],

Px(τb < τa) =
sI(x)− sI(a)

sI(b)− sI(a)
,

we need the following equality. Let ℓ ≤ α ≤ a < x < b ≤ β ≤ r,

Px(τβ < τα) = Ex[1τβ<τα ]

(Tower property) = Ex

[
Ex[1τβ<τα | Fτa,b+]

]
= Ex

[
EXτa,b

[1τβ<τα ]
]

= Ex

[
1τb<τa Eb[1τβ<τα ] + 1τa<τb Ea[1τβ<τα ]

]
,

rewrite this as probability, we have

Px(τβ < τα) = Px(τb < τa)Pb(τβ < τα) + Px(τa < τb)Pa(τβ < τα). (5.5)

By taking α = ℓ, and β = r, we have

Px(τr < τℓ) = Px(τb < τa)Pb(τr < τℓ) + Px(τa < τb)Pa(τr < τℓ).

which gives in terms of function sI , we have

sI(x) = Px(τb < τa)sI(b) + Px(τa < τb)sI(a).

Taking into the account that

1 = Px(τα,β < ∞) = Px(τb < τa) + Px(τa < τb),

then by solving these linear equations, we have

Px(τb < τa) =
sI(x)− sI(a)

sI(b)− sI(a)
.

We have now proved the existence of a scale function when the state space I is compact. The problem is
sI(x) depends on I, in particular, it doesn’t make sense that it is not compact. E.g. consider the SBM in
Example 5.3, I = (−∞,∞), then sI(x) = Px(τ∞ < τ−∞) is not making any sense.

If I is not compact, then let consider an increasing sequence of interval Jn = [an, bn] such that Jn ↑ I.
In particular, if I contains left endpoint ℓ (right endpoint r), then we put an = ℓ (bn = r) for all n ≥ 1.

Let us define a sequence of functions s(n) : Jn → R inductively as follows: let s(1) = sJ1
and for n ≥ 1,

s(n+1)(x) =
(
s(n)(bn)− s(n)(an)

) sJn+1
(x)− sJn+1

(an)

sJn+1
(bn)− sJn+1

(an)
+ s(n)(an). (5.6)

Notice that, s(n+1)(x) is an affine transformation of sJn+1
(x). Moreover, it follows the definition that

s(n+1)(an) = s(n)(an), s(n+1)(bn) = s(n)(bn), n ≥ 1. (5.7)

Now, we will show that these functions, s(n), are the same inside Jn. Namely,

s(n+1)(x) = s(n)(x), ∀x ∈ Jn. (5.8)

Let α = an+1, β = bn+1, and a = an, b = bn in (5.5), we have

sJn+1
(x) = Px(τbn+1

< τan+1
)

= Px(τan
< τbn)Pan

(τbn+1
< τan+1

) + Px(τbn<τan
)Pbn(τbn+1

< τan+1
)

= (1− sJn
(x))sJn+1

(an) + sJn
(x)sJn+1

(bn).

Plug this into (5.6), we have

s(n+1)(x) = s(n)(an) + (s(n)(bn)− s(n)(an))sJn
(x) = c1sJn

(x) + c2, x ∈ Jn.

Moreover,
s(n)(x) = c̃1sJn

(x) + c̃2.

From (5.7), we acquire c̃1 = c1 and c̃2 = c2, which proves (5.8). Up to now, we have proved the function
sJn

exist and if we pass the limit n → ∞, we can get a scale function for all x ∈ I since Jn ↑ I, and one
scale function is enough since they are coincide with the most general one.
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.2 Scale function

▶ Example 5.11. Consider a standard Brownian motion B = (Bt)t≥0. It was shown that

Px(τb < τa) =
x− a

b− a
.

Hence, the scale function of a SBM is s(x) = x. Thus, SBM is in natural scale.

▶ Remark. The scale function describe the tendency of the process to move to the “right” and to the
“left”. 4 This is seen from (5.4) as follows. From (5.4), we have

Px(τa < τb) =
s(b)− s(x)

s(b)− s(a)

Thus, setting x = (a+ b)/2, it is seen that

Px(τa < τb) ≥ Px(τb < τa)

if and only if s(x) ≤ (s(a) + s(b))/2. Thus if s is convex at a point, then X tends to move more to the
lower boundary. Likewise, if s is concave at a point, then X tends to move more to the upper boundary.

▶ Proposition 5.12. Let X = (Xt)t≥0 be a regular diffusion. Then the process s(X) = (s(Xt))t≥0 is a
regular diffusion and is in natural scale.

▶ Lemma 5.13. Let J = [a, b] ⊂ I. Then for x ∈ J , sJ(Xt∧τa,b
) is a continuous Px-martingale.

Proof. To prove the martingale property, we first prove the following,

sJ(Xt∧τa,b
) = Px(τb < τa | FX

t+).

Note,

Px(τb < τa | FX
t+) = Ex[1τb<τa1τb≤t | FX

t+] + Ex[1τb<τa1τb>t | FX
t+]

= Ex[1τb<τa1τb≤t | FX
t+] + Ex[1τb<τa1τb>t1τa>t | FX

t+]

Moreover, the event

{τb < τa} ∪ {τb ≤ t} = (∪s∈Q, s≤t{τb < s < τa} ∩ {τa ≤ t}) ∪ {τb ≤ t < τa}

is FX
t+ measurable. Therefore

Px(τb < τa | FX
t+) = 1t≥τb,τa>τb + 1τb>t,τa>t EXt

[1τb<τa ]

= 1t≥τa,b
1τa>τb + 1τb>t,τa>tsJ(Xt) = sJ(Xs∧τa,b

).

Then, for s ≤ t,

Ex[sJ(Xt∧τa,b
) | FX

s+] = Ex[Px(τb ≤ τa | FX
t+) | FX

s+] = Px(τb < τa | FX
s+) = sJ(Xs∧τa,b

).

▶ Definition 5.14 (local martingale). An adapted (right) continuous process M = (Mt)t≥0 (with
M0 ∈ L1 or else M := M −M0) is called a local martingale, if there exists a sequence of stopping time
{τn}n≥1 such that

(1) τn ↑ ∞, as n → ∞.

(2) Xτn = (Xτn
t )t≥0 = (Xt∧τn)t≥0 is a martingale for each n ≥ 1.

▶ Remark. The sequence {τn}n≥1 is called a localization sequence. Each martingale is a local martingale
and the converse is not true in general. A typical localization sequence is given by

τn = inf{t > 0 : |Mn | = n}, n ≥ 1.

Note that Mτn is bounded, i.e. |Mt∧τn | ≤ n for all t ≥ 0 when n ≥ 1 is fixed.
4The quotation mark here is to indicate that the left and right mentioned here are in the state space I, not in time

space R+.
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.3 Green Functions

▶ Proposition 5.15. A locally bounded measurable function f : I → R is a scale function of X if and
only if f(X)τℓ,r = (f(Xt∧τℓ,r))t≥0 is a local martingale.

Proof. (⇐): if f(X)τℓ,r is a local martingale. Let x ∈ (a, b), and using

| f(Xt)
τa,b | = | f(Xt∧τa,b

) | ≤ C

since f is locally bounded. Therefore f(Xt)
τa,b is a bounded martingale. Thus

f(x) = Ex[f(X0)] = Ex[f(X0∧τa,b
)] = Ex[f(Xτa,b

)]

= Ex[1τa<τbf(Xτa,b
)] + Ex[1τb<τaf(Xτa,b

)]

= f(a)Px(τa < τb) + f(b)Px(τb < τa).

On the other hand, we know that

1 = Px(τa < τb) + Px(τb < τa).

Solving the linear system, we have

Px(τb < τa) =
f(x)− f(a)

f(b)− f(a)

showing that f is a scale function.

5.3 Green Functions

▶ Definition 5.16 (convex function). A function is convex on a convex set C, if for any x, y ∈ C, and
λ, µ such that λ+ µ = 1, the following inequality holds

f(λx+ µy) ≤ λf(x) + µf(y).

We say that function f is concave on a set C if function −f is convex.

Fixed a < b. Let function f be convex on [a, b]. Observe that for any a < x ≤ y ≤ z < b, the following
inequality holds

f(y) = f

(
z − y

z − x
x+

y − x

z − x
z

)
≤ z − y

z − x
f(x) +

y − x

z − x
f(z). (5.9)

Subtracting f(x) from both sides and dividing by y − x, we obtain

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
.

Therefore the function

z 7→ f(z)− f(x)

z − x

is an increasing function in z. Rearranging (5.9), we have

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
,

which implies that

z 7→ f(z)− f(x)

z − x

is bounded from below. Hence the right derivative at x exist

f+(x) := lim
y↓x

f(y)− f(x)

y − x
.

Similarly, the left derivative at x exists as well

f−(x) = lim
z↑x

f(z)− f(x)

z − x
≤ f+(x).

Moreover, we have the following properties of these left and right derivatives,
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(M1) x 7→ f+(x) and x 7→ f−(x) are increasing

(M2) x 7→ f+(x) is right continuous.

(M3) x 7→ f−(x) is left continuous.

(M4) The set {x ∈ (a, b) : f+(x) ̸= f−(x)} is at most countable.

From (M1) and (M2), there exist a unique non-negative locally finite measure µ on the interval (a, b)
associated with x 7→ f+(x) by means of

µ((c, d]) = f+(d)− f+(c), (c, d] ⊂ (a, b). (5.10)

The measure µ is defined on B((a, b)).
▶ Remark. f+(x) is increasing on (a, b) is equivalent to convexity. The sufficient condition for convexity
will be the second derivative f ′′(x) ≥ 0. E.g. f(x) = x2 is a convex functions, and f ′′(x) = 2 > 0. This
allow us to simplify the expression for measure µ under additional assumption that f is twice continuously
differentiable. In this case, f+ = f ′, and (5.10) becomes

µ((c, d]) = f ′(d)− f ′(c) =

∫ d

c

f ′′(z) dz,

where f ′′ > 0 on (a, b). Hence µ is absolutely continuous with the density given by f ′′. Namely, for any
compact subset B of (a, b),

µ(B) =

∫
B

f ′′(z) dz.

▶ Definition 5.17 (Green function). The Green function Ga,b : [a, b]× [a, b] 7→ R is defined as follows

Ga,b(x, y) =

{
(x−a)(b−y)

b−a for a ≤ x ≤ y ≤ b.
(y−a)(b−x)

b−a for a ≤ y ≤ x ≤ b.

▶ Lemma 5.18 (convexity and Green function). Let f be convex on (a, b) and continuous on [a, b] with
f(a) = f(b) = 0. Then

f(x) = −
∫
(a,b)

Ga,b(x, y)µ(dy), x ∈ (a, b),

where µ is defined in (5.10).

Proof. First for a < x ≤ y < b. Then

f(y)− f(x) =

∫
(x,y)

f+(z) dz.

Let y ↑ b and using the continuity of f and monotonicity of f+(z), we obtain

f(b)− f(x) =

∫
(x,b)

f+(z) dz.

Using (5.10) and Fubini theorem with the assumption that f(b) = 0, we have

−f(x) =

∫
(x,b)

(
f+(x) +

∫
(x,z]

µ(dw)

)
dz

= (b− x)f+(x) +

∫
(x,b)

∫
(w,b)

dz µ(dw)

= (b− x)f+(x) +

∫
(x,b)

(b− w) µ(dw).

Similarly,

f(x) = (x− a)f+(x)−
∫
(a,x)

(w − a) µ(dw).
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Multiply the first equality by (a− x), the second by (b− x) and adding them to get

(b− a)f(x) = −(x− a)

∫
(x,b)

(b− w) µ(dw)− (b− x)

∫
(a,x)

(w − a) µ(dw).

The analysis can be extend to concave functions. For example, we can define the associated measure,
taking into account that x 7→ f+(x) is decreasing,

µconcave((c, d]) = f+(c)− f+(d), (c, d] ⊂ (a, b). (5.11)

This measure is defined on B((a, b)). Therefore we have a lemma,

▶ Lemma 5.19. Let f be concave on (a, b), continuous on [a, b] with f(a) = f(b) = 0. Then

f(x) =

∫
(a,b)

G(x, y) µ(dy), x ∈ [a, b],

where µ is defined by (5.11).

5.4 Speed Measure

We turn to another important characteristic of the diffusion process called the speed measure. We will
assume that X is a regular diffusion in natural scale. If X is not natural scale, we can transform it into
natural scale by Proposition 5.12.

Let J = [a, b] ⊂ I. Recall that τJ = τa,b ≤ ∞ is the first hitting time of either a or b. Put

mJ(x) := ma,b(x) := Ex[τJ ].

Then mJ(x) < J for x ∈ J by Proposition 5.7. Since X is a regular diffusion mJ(a) = mJ(b) = 0.

▶ Theorem 5.20. Function mJ is continuous and strictly concave on [a, b].

Proof. Consider the points a ≤ c ≤ x ≤ d ≤ b. By the strong Markov property of X, we have

ma,b(x) = mc,d(x) +
d− x

d− c
ma,b(c) +

x− c

d− c
ma,b(d).

Observe that, we can put

x = λc+ µd, λ =
d− x

d− c
, µ =

x− c

d− c
.

It is clear that λ, µ ≥ 0, and λ+ µ = 1. Then, using the fact that mc,d(x) > 0 for x ∈ (c, d), we have

ma,b(λc+ µd) >
d− x

d− c
ma,b(c) +

x− c

d− c
ma,b(d) = λma,b(c) + µma,b(d).

Therefore ma,b(x) is concave on [a, b].

▶ Theorem 5.21. There exist a unique non-negative locally finite measure m defined on B((ℓ, r)) such
that for any [a, b] ⊂ [ℓ, r], we have

ma,b(x) =

∫
(a,b)

Ga,b(x, y) m(dy), x ∈ [a, b]. (5.12)

▶ Definition 5.22 (speed measure). The measure m defined in Theorem 5.21 is called the speed measure
of the process X.

▶ Example 5.23. Consider a SBM B = (Bt)t≥0. Brownian motion is already in natural scale. To find
the speed measure of B, it is more convenient to use (5.11).

ma,b(x) = Ex[τa,b] =
a2(b− x) + b2(x− a)

b− a
− x2.
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This function is continuously differentiable and hence the right and left derivatives are the same,

m+
a,b(x) =

dma,b(x)

dx
= −2x− b2 − a2

b− a
= −2x− (b+ a).

Then for any (c, d] ⊂ (a, b], we have
ma,b((c, d]) = 2(d− c).

Hence ma,b((c, d]) is absolutely continuous and

m(dx) = 2λ(dx),

where λ is the Lebesgue measure on B(R).
▶ Corollary 5.24. If f : R → R is a (non-negative or bounded) Borel function, then we have

Ex

[∫ τa,b

0

f(Xt) dt

]
=

∫ b

a

f(y)Ga,b(x, y) m(dy), x ∈ (a, b) ⊂ I. (5.13)

Proof. Note that (5.13) reduce to (5.12) for f ≡ 1. To prove for general Borel function, it is sufficient to
prove for f = 1(c,b) for c ∈ (a, b). Define the following function

v(x) = Ex

(∫ τa,b

0

1(c,b)(Xt) dt

)
, x ∈ (a, b).

By argument from previous theorem, we have v(x) is concave. Moreover, by strong Markov property,

v(x) =

{
Ex[τc,b] +

(
b−x
b−c

)
v(c) if x ∈ (c, b),

x−a
c−a v(c) if x ∈ (a, c].

Now, in particular, v is continuous, and v(b) = v(a) = 0. Therefore, by Lemma 5.19

v(x) =

∫ b

a

Ga,b(x, y) mv(dy), x ∈ (a, b).

Using the definition of mv, we have

mv((α, β]) = v+(α)− v+(β) = m((α, β) ∩ (c, b)).

So, mv(dy) = 1(c,d)(y) m(dy). So for f = 1(c,b),

v(x) = Ex

[∫ τa,b

0

f(Xt) dt

]
=

∫ d

c

Ga,b(x, y)1(c,d)(y) m(dy).

Extension to general Borel function can be done by using linearity.

▶ Remark. If X is not in natural scale, it is also possible to define a speed measure. Let s be a scale
function of X. Introduce a general form of the Green function

Ga,b(x, y) =


(s(b)− s(y))(s(x)− s(a))

s(b)− s(a)
, for a ≤ x ≤ y ≤ b,

(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
for a ≤ y ≤ x ≤ b.

(5.14)

Therefore by Theorem 5.21 and Corollary 5.24, we have

▶ Theorem 5.25. Let X be a one-dimensional regular diffusion with scale function s, then

(1) There exist a unique Lebesgue-Stiltjes measure m on B((ℓ, r)) such that for any [a, b] ⊂ (ℓ, r), we
have

ma,b(x) =

∫ b

a

Ga,b(x, y) m(dy), x ∈ [a, b],

where Ga,b is defined in (5.14).

(2) Moreover, if f : R → R is a (non-negative or bounded) Borel function, then we have

Ex

[∫ τa,b

0

f(Xt) dt

]
=

∫ b

a

f(y)Ga,b(x, y) m(dy), x ∈ [a, b] ⊂ (ℓ, r),

where Ga,b is given in (5.14).
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5.5 Infinitesimal Generator

Recall that Cb(I) is a norm space that consists of function which are bounded and continuous in I with
the supermum norm ∥ f ∥ = supx∈I | f(x) |. Also, for a strong Markov process, we can define a family of
transition operators (Pt)t≥0

Ptf(x) = Ex[f(Xt)] =

∫
I

Pt(x,dy)f(y).

▶ Proposition 5.26 (continuity property). Let X be a regular one-dimensional diffusion with transition
operators (Pt)t≥0 and f ∈ Cb(I). Then function the mapping (t, x) 7→ Ptf(x) is jointly continuous on
[0,∞)× I. In particular, X is a Feller process.

Proof. Fix f ∈ Cb(I) and t ∈ [0,∞). Consider two sequences tn → t and xn → x ∈ int(I) = (ℓ, r). Since
X is continuous and all x ∈ (ℓ, r) is regular, we obtain

Px(τxn
→ 0) = 1, 1τxn<∞ → 1, n → ∞.

By continuity, Xτxn+tn → Xt as n → ∞. Since f is bounded and continuous, we have by dominated
convergence theorem,

Ex[f(Xτxn+tn1τxn<∞] → Ex f(Xt) = Ptf(x) = Ptf(x), (5.15)

the last equality is the definition of the transition operator (4.4). By the strong Markov property, we have

Ex[f(Xτxn+tn)1τxn<∞] = Ex

[
Ex[f(Xτxn+tn)1τxn<∞ | Fτxn+]

]
= Ex

[
1τxn<∞ Ex[f(Xtn) ◦ θτxn

| Fτxn+]
]

(Strong Markov Property) = Ex

[
1τxn<∞ EXτxn

[f(Xtn)]
]

= Ptnf(xn)Px(τxn
< ∞)

Taking the limit and using the dominant convergence theorem, we have

lim
n→∞

Ptnf(xn)Px(τxn
< ∞) → Ptf(x).

Hence we proved (5.15).

Thus we can see that for regular one-dimensional diffusion, the class of Feller processes coincided with
the class of strong Markov process.

▶ Definition 5.27 (resolvent). For λ > 0 define the resolvent operator Rλ : Cb(I) → Cb(I) as,

Rλf(x) =

∫ ∞

0

e−λtPtf(x) dt.

▶ Proposition 5.28 (properties of resolvent). Let λ, µ > 0, then

(1) The resolvent equation holds, that is

Rµ = Rλ + (λ− µ)RλRµ.

(2) RλRµ = RµRλ.

(3) Rλf ≡ 0 if and only if Rµf ≡ 0.

(4) Rλf ≡ 0 if and only if f ≡ 0.

(5) The range of Rλf does not depend on λ.
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Proof of (4). If f ≡ 0 then Rλf ≡ 0 by definition. Therefore, let Rλf ≡ 0. Then for any µ > 0, by the
resolvent equation

Rµf = Rλf + (λ− µ)RλRµf (resolvent equation)

= Rλf + (λ− µ)RµRλf ≡ 0 (commutativity).

Note that

0 = Rµf =

∫ ∞

0

e−µtPtf(x) dt

=
1

µ

∫ ∞

0

e−sPs/µf(x) ds (change of variable, s = µt)

Since λ > 0, we have ∫ ∞

0

e−sPs/µf(x) ds = 0.

Notice, by Proposition 5.26, we have

Ps/µf(x) → P0f(x) µ → ∞.

Moreover, since X is a Feller process, therefore Pt/µf(x) ≤ ∥ f ∥. Therefore, we have, by dominated
convergence theorem

lim
µ→∞

∫ ∞

0

e−sPs/µf(x) ds

=

∫ ∞

0

lim
µ→∞

e−sPs/µf(x) ds (dominated convergence theorem)

=

∫ ∞

0

e−sP0f(x) ds = f(x) ≡ 0.

(
use

∫ ∞

0

e−s ds = 1

)

Proof of (5). Let f = Rµg. The statement is equivalent to: there exist g̃ such that f = Rλg̃. It follows
from the resolvent equation that

f = Rµg = Rλg + (λ− µ)RλRµg = Rλ(g + (λ− µ)Rµg).

Hence, we can simply set g̃ = g + (λ− µ)Rµg.

Let id be the identity operator on Cb(I) given by idf = f . It follows from (4) of Proposition 5.28
that Rλf ≡ 0 if and only if f ≡ 0. This implies that the inverse R−1

λ f is well defined for any f from the
range of Rλ.

▶ Definition 5.29 (infinitesimal generator). Let us denote the domain of the operator A by

DA = {f | f = Rλg for some g ∈ Cb(I)}.

For any f ∈ DA, define
Af = f −R−1

1 f.

We call (A,DA) the infinitesimal generator of (Pt)t≥0 with the domain DA. Or we say A is an infinitesimal
generator of X with domain DA.

This definition is unclear at the moment, we will show in the next several result that the infinitesimal
generator A fully characterize the behavior of the diffusion X at short time scale. Using the resolvent
equation, one can show that, using R−1

µ = R−1
λ − λ+ µ,

R−1
µ = µ−A (5.16)

▶ Theorem 5.30. Infinitesimal generator (A,DA) determines the law of X.
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Proof. Given A, we can first define R−1
µ for all µ by (5.16). Then we can define Rµ since all the resolvent

are well defined in sense of they all have inverse. Since Rµf is a Laplace transform of Ptf , we can invert
the Laplace transform and obtain Ptf . Thus, we can obtain the transition probabilities and hence we can
define the law of X by Proposition 4.4.

▶ Lemma 5.31 (Dynkin’s formula). Let X be a regular one-dimensional diffusion with infinitesimal
generator (A,DA). Let τ be a stopping time with finite mean Ex[τ ] < ∞. Then for any f ∈ DA, we have

Ex[f(Xτ )] = f(x) + Ex

[∫ τ

0

Af(Xt) dt

]
.

Proof. Since f ∈ DA, there exist g ∈ Cb(I) such that f = Rλg. Then,

f(x) = Rλg(x) =

∫ ∞

0

e−λtPtg(x) dt

=

∫ ∞

0

e−λt Ex[g(Xt)] dt (definition of Pt)

= Ex

[∫ ∞

0

e−λtg(Xt) dt

]
(Fubini Theorem)

= Ex

[∫ τ

0

e−λtg(Xt) dt

]
+ Ex

[∫ ∞

τ

e−λtg(Xt) dt

]
Second term can be simplified using the strong Markov property,

Ex

[∫ ∞

τ

e−λtg(Xt) dt

]
=Ex

[
e−λτ

∫ ∞

0

e−λsg(Xs+τ ds

]
(change of variable, t = s+ τ)

=Ex

[
e−λτ Ex

[∫ ∞

0

e−λsg(Xs+τ ) ds | Fτ+

]]
(Tower property)

=Ex

[
e−λτ EXτ

[∫ ∞

0

e−λsg(Xs) ds

]]
(Strong Markov property)

=Ex

[
e−λτ

∫ ∞

0

e−λsPsg(Xτ ) ds

]
(Fubini and definition of Pt)

=Ex

[
e−λτRλg(Xτ )

]
(definition of Rλ).

Hence for f ∈ DA, we have

f(x) = Ex

[∫ τ

0

e−λtg(Xt) dt

]
+ Ex

[
e−λτRλg(Xτ )

]
.

For any λ, there exist a function gλ ∈ Cb(I) such that f = Rλgλ, or equivalently by (5.16), gλ = (λ−A)f .
Then

f(x) = Ex

[∫ τ

0

e−λt(λf(Xt)−Af(Xt)) dt

]
+ Ex[e

−λτf(Xτ )]

= Ex

[∫ τ

0

λe−λtf(Xt) dt

]
− Ex

[∫ τ

0

e−λtAf(Xt) dt

]
+ Ex

[
e−λτf(Xτ )

]
.

Letting λ → 0, we obtain by dominated convergence theorem,

Ex

[
e−λτf(Xτ )

]
→ Ex [f(Xτ )] .

Moreover, since Af ∈ Cb(I) is bounded and E[τ ] < ∞, apply the dominated convergence theorem again
we have

lim
λ→0

Ex

[∫ τ

0

e−λtAf(Xt) dt

]
= Ex

[∫ τ

0

Af(Xt) dt

]
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and

lim
λ→0

Ex

[∫ τ

0

λe−λtf(Xt) dt

]
= lim

λ→0
Ex

[
λ

∫ ∞

0

e−λt f(Xt)1t≤τ︸ ︷︷ ︸
≤∥ f ∥E[τ ]

dt

]
= 0,

This proves the Lemma.

Now, we present an equivalent definition of the infinitesimal generator. First, we need the following,

▶ Definition 5.32. We say that functions ϕt converges boundedly pointwise to some ϕ(x) on some
subset C of their domains as t → 0 if

(1) Pointwise limit exist.
lim
t→0

ϕt(x) = ϕ(x), for all x ∈ C.

(2) The functions are bounded.

sup
x∈C

|ϕt(x) | ≤ M < ∞, for all sufficiently small t.

Then, let DÃ be the set of f ∈ Cb(I) such that

Phf(x)− f(x)

h
→ Ãf(x)

converges boundedly pointwise and Ãf ∈ Cb(I). The limit defines a new operator Ã : Cb(I) → Cb(I).

This definition of the operator (Ã,DÃ) can be used as an equivalent definition of the infinitesimal
generator. It is more intuitively clear as it shows that the infinitesimal generator defines the behavior of
the diffusion in infinitesimal moments of time in future. Recall that, the operator (A,DA) is defined by
Definition 5.29.

▶ Proposition 5.33. A = Ã and DA = DÃ.

Proof. Assume that f ∈ DA. Apply Dynkin’s formula with τ = h, and using Fubini theorem, we have

Ex[f(Xh)] = f(x) + Ex

[∫ h

0

Af(Xt) dt

]
= f(x) +

∫ h

0

Ex[Af(Xt)] dt.

Using the Dynkin’s formula, we have the following arguments

Ãf = lim
h→0

Phf(x)− f(x)

h
(definition of Ã)

= lim
h→0

Ex[f(Xh)]− f(x)

h
(definition of Pt)

= lim
h→0

1

h

∫ h

0

Ex[Af(Xt)] dt (Dynkin’s formula)

= lim
h→0

1

h

∫ h

0

PtAf(x) dt

= P0Af(x) (Fundamental Theorem of Calculus and Continuity)

= Af(x) (P0 is id).

This shows that Ãf = Af for f ∈ DA and that DA ⊂ DÃ. Now let f ∈ DÃ, and we want to show f
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satisfies the Definition 5.29. Namely, Ãf = f −R−1
1 f , and this equivalently as to prove R1(1− Ã)f = f .

R1(1− Ã)f = R1f − lim
h→0

R1
Phf − f

h
(DCT to pull R1 inside)

= R1f − lim
h→0

1

h

∫ ∞

0

e−t(Pt+hf − Ptf) dt (def. of R1)

= R1f − lim
h→0

1

h

(∫ ∞

0

e−tPt+hf dt−
∫ ∞

0

e−tPtf dt

)
= R1f − lim

h→0

1

h

(∫ ∞

h

e−s+hPsf ds−
∫ ∞

0

e−tPtf dt

)
= R1f − lim

h→0

1

h

(∫ ∞

h

e−t+hPtf dt−
∫ ∞

h

e−tPtf dt−
∫ h

0

e−tPtf dt

)

= R1f − lim
h→0

∫ ∞

h

(
e−t+h − e−t

h

)
Ptf dt− lim

h→0

1

h

∫ h

0

e−tPtf dt

= R1f −
∫ ∞

0

e−tPtf dt+ P0f

= R1f −R1f + f = f.

Hence f ∈ DA and f − Ãf = R−1
1 f implies that Ã = A on DÃ and DÃ ⊂ DA.

▶ Theorem 5.34 (description of infinitesimal generator using speed measure). Let X be in natural scale.
For a function f ∈ DA and x ∈ int(I), we have

Af(x) =
d

dm

d

dx
f(x)

where m is the speed measure, in the sense that

(1) f ′(x) exists except possibly on the countable set of points {x ∈ int(I) | m({x}) > 0}.

(2) If x1 and x2 are the points at which f ′(x) exists, then

f ′(x2)− f ′(x1) =

∫ x2

x1

Af(y) m(dy).

Proof. Let [a, b] ⊆ I, then E[τa,b] < ∞. By Dynkin’s formula,

Ex[f(Xτa,b
)]− f(x) = Ex

[∫ τa,b

0

Af(Xt) ds

]
=

∫ b

a

Ga,b(x, y)Af(y) m(dy). (5.17)

The final equality comes from Corollary 5.24. Since X is in natural scale,

Ex[f(Xτa,b
)] = f(a)Px(τa < τb) + f(b)Px(τb < τa) = f(a)

b− x

b− a
+ f(b)

x− a

b− a
.

Hence plug this in (5.17), we have

f(a)
b− x

b− a
+ f(b)

x− a

b− a
− f(x) =

∫ b

a

Ga,b(x, y)Af(y) m(dy). (5.18)

Manipulate and multiply by (b− a)/((x− a)(b− x)), we have

f(b)− f(x)

b− x
− f(x)− f(a)

x− a
=

∫ b

a

Ha,b(x, y)Af(y) m(dy),

where Ha,b(x, y) is defined as

Ha,b =

{
b−y
b−x a ≤ x ≤ y ≤ b,
y−a
x−a a ≤ y ≤ x ≤ b.
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Let b ↓ x, a ↑ x, suppose left and right derivative exist. Then

f+(x)− f−(x) = lim
b↓x

∫
[x,b)

b− y

b− x
Af(y) m(dy) + lim

a↑x

∫
(a,x)

y − a

x− a
Af(y) m(dy)

= m({x})Af(x) (DCT)

This quantity is not zero only if m({x}) ̸= 0. Now, let us focused on (5.18), replace x by x + h and
subtract the original equation, we have

f(a)

(
− h

b− a

)
+ f(b)

(
h

b− a

)
− (f(x+ h)− f(x))

=

∫ b

a

(Ga,b(x+ h, y)−Ga,b(x, y))Af(y) m(dy).

Multiply by (b− a)/h, we have

f(b)− f(a)−
(
f(x+ h)− f(x)

h

)
(b− a)

=

∫ b

a

(
Ga,b(x+ h, y)−Ga,b(x, y)

h

)
(b− a)Af(y) m(dy).

Taking the limit as h → 0, and assume that f ′ exist at x, then

f(b)− f(a)− f ′(x)(b− a) = −
∫ x

a

(y − a)Af(y) m(dy) +

∫ b

x

(b− y)Af(y) m(dy).

Choosing x1 < x2 such that f ′ exists at x1 and x2,

f ′(x1)(a− b) + f(b)− f(a) = −
∫ x1

a

(y − a)Af(y) m(dy) +

∫ b

x1

(b− y)Af(y) m(dy),

f ′(x2)(a− b) + f(b)− f(a) = −
∫ x2

a

(y − a)Af(y) m(dy) +

∫ b

x2

(b− y)Af(y) m(dy).

Subtract the second equation from the first equation,

(f ′(x1)− f ′(x2)) (a− b) =

∫ x2

x1

(y − a)Af(y) m(dy) +

∫ x2

x1

(b− y)Af(y) m(dy)

=

∫ x2

x1

(b− a)Af(y) m(dy).

Rearrange this,

f ′(x2)− f ′(x1) =

∫ x2

x1

Af(y) m(dy).

Suppose X is not in natural scale, then let s be the scale function of X. We define the s-derivative of
a function at a point x as follows

df

ds
(x) = lim

y→x

f(y)− f(x)

s(y)− s(x)
.

▶ Theorem 5.35. Let X be a one-dimensional regular diffusion with scale function s. For a function
f ∈ DA and x ∈ int(I), we have

Af(x) =
d

dm

d

ds
f(x)

in the sense that

(1) The s-derivative df/ds exists except possibly on the set {x ∈ int(I) | m({x}) > 0}.
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(2) If x1 and x2 are the points at which the s-derivative df/ds exists, then

df

ds
(x2)−

df

ds
(x1) =

∫ x2

x1

Af(y) m(dy).

From previous theorem, we have

As(x) =
d

dm

ds(x)

ds
=

d

dm
1 = 0.

▶ Proposition 5.36. If I = [0,∞), then for every f ∈ DA, we have

f+(0) = m({0})AXf(0).

5.6 Construction of Regular Diffusion

Previously, we have discussed that every regular one-dimensional diffusion has two important characteris-
tics: scale function and speed measure. This section, we will prove that these two characteristics will
completely defines a one-dimensional diffusion. Namely, given

(1) A state space I, which is an interval of R.

(2) A continuous strictly increasing function s on I.

(3) A measure m on I, which is positive and locally finite on int(I).

One can construct a regular diffusion with the scale function s and the speed measure m. It is sufficient
to discuss construction of a regular diffusion X in natural scale with a given speed measure. We will
consider a simplified case, where m be a measure on I which is absolutely continuous with a non-negative
density with respect to the Lebesgue measure, that is∫

C

m(dx) =

∫
C

m′(x) dx,

where m′(x) is the density of the speed measure and m′(x) ≥ 0, and C is any measurable set C ⊂ I. or
equivalently,

m(dx) = m′(x)dx

We also assume that m(a, b) > 0 for any interval (a, b) ⊂ I to ensure regularity of the diffusion.

▶ Definition 5.37. Let B = (Bt)t≥0 be a standard Brownian motion on I = R. For t ≥ 0, let

Tt = inf

{
r ≥ 0 | 1

2

∫ r

0

m′(Bs) ds = t

}
.

▶ Theorem 5.38. Let I = R be the state space. Let m(dx) be absolutely continuous on I with continuous
density m′(x) > 0. Let B = (Bt)t≥0 be a standard Brownian motion and Tt be the time-changing process
defined in Definition 5.37. Then X = (Xt)t≥0, where Xt = BTt

is a regular one-dimensional diffusion in
natural scale with speed measure given by

m(dx) = m′(x)dx, x ∈ I.

The following theorem is the general result.

▶ Theorem 5.39. Let B = (Bt)t≥0 be a standard Brownian motion. Let m be a measure on I such
that 0 < m(a, b) < ∞ for any finite interval (a, b) ⊂ int(I). Then there exist an increasing time-changing
process Tt of stopping times such that X = (Xt)t≥0, where Xt = BTt

, t ≥ 0 is a one-dimensional regular
diffusion in natural scale on I with speed measure m.

Overview

(1) We have a scale function s, and a (speed) measure m.

(2) Using Definition 5.37, we are able to generate any one-dimensional regular diffusion Xt in natural
scale as a time changing Brownian motion by Theorem 5.38.

(3) Finally, we get Yt = s−1(Xt), then Yt will have scale function s and speed measure m.
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5.7 Dynkin’s Diffusion

▶ Definition 5.40 (Dynkin’s condition). A regular one-dimensional diffusion on I satisfies the Dynkin’s
conditions if there exist functions µ(x) and σ2(x), which are continuous on int(I) = (ℓ, r), σ2(x) > 0 on
int(I) with

(1) For any ε > 0,

lim
h→0

1

h
Px(|Xh − x | ≥ ε) = 0.

(2) For any ε > 0 and x ∈ int(I),

lim
h→0

1

h
Ex[Xh − x; |Xh − x | ≤ ε] = µ(x).

(3) For any ε > 0 and x ∈ int(I),

lim
h→0

1

h
Ex[(Xh − x)2; |Xh − x | ≤ ε] = σ2(x).

where the convergence is bounded pointwise on all finite intervals [a, b] ⊂ int(I).

Denote C2
0 (I) by the set of functions with continuous second derivative on I such that

{x : f(x) > 0} ⊂ [a, b] ⊂ int(I),

for some a, b. Denote supp(f) = {x : f(x) > 0}.
▶ Proposition 5.41. Let f ∈ C2

0 (I). Let X be a one-dimensional regular diffusion satisfying Dynkin’s
conditions with generator (A,DA). Then f ∈ DA, and

Af(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

▶ Example 5.42 (Dynkin’s condition). Let X = (Xt)t≥0 be a Brownian motion with a drift, that is

Xt = X0 + µt+ σBt, t ≥ 0,

where B = (Bt)t≥0 is a standard Brownian motion. Then let us prove that X satisfies Dynkin’s conditions.
Fix ε > 0 and first,

1

h
Px(|Xh − x | ≥ ε) =

1

h
Px(|µh+ σBh | ≥ ε)

≤ E[(σBh + µh)4]

hε4
(Markov inequality)

≤ 16E[σ4B4
h + (µh)4]

hε4

=
16

ε4
(3σ4h+ µ4h3) → 0

as h → 0. Hence we proved (1). Secondly,

1

h
Ex[Xh − x; |Xh − x | ≤ ε] =

Ex[Xh − x]

h
− Ex[Xh − x; |Xh − x | > ε]

h
.

The first term is
Ex[Xh − x]

h
=

Ex[µh+ σBh]

h
= µ.

The second term can be bounded

Ex[Xh − x; |Xh − x | > ε]

h
≤ Ex[(Xh − x)4]

ε3h

=
Ex[(µh+ σBh)

4]

ε3h

≤ 16Ex[(µh)
4 + σ4B4

h]

ε3h

=
16

ε3
(3σ4h+ µ4h3) → 0

as h → 0, and this proves (2). Condition (3) can be proved in an analogous way.
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▶ Example 5.43 (infinitesimal generator).

(1) The Ornstein-Uhlenbeck has the generator

A = −βx
d

dx
+

σ2

2

d2

dx2
.

(2) Generally, if X = (Xt)t≥0 solves the SDE

dXt = µ(Xt) dt+ σ(Xt) dBt,

then under some suitable and general conditions, X is a one-dimensional regular diffusion satisfying
Dynkin’s conditions with the drift coefficient µ(x) and diffusion coefficient σ(x). Then the generator
of X is given by

A = µ(x)
d

dx
+

σ2(x)

2

d2

dx2
.

▶ Proposition 5.44 (construct scale function for Dynkin’s diffusion). Let X be a regular one-dimensional
diffusion satisfying Dynkin’s conditions. Let µ(x) be the drift coefficient and σ(x) be the diffusion coefficient.
Then the scale function s(x) given by (up to affine transformation) by the following expression

s(x) =

∫ x

x0

exp

(
−
∫ y

y0

2µ(z)

σ2(z)
dz

)
dy, x ∈ I, x0, y0 ∈ int(I).

▶ Example 5.45 (scale function for Brownian motion). The standard Brownian motion satisfies Dynkin’s
conditions with µ(x) = 0 and σ(x) = 1. Hence with x0 = y0 = 1, we have

s(x) =

∫ x

0

exp

(
−
∫ y

0

0 dz

)
dy = x.

Having defined the scale function for Dynkin’s diffusion, we then want to construct the speed measure.
Let us consider the transformation X̃ = s(X) = (s(Xt))t≥0 of X such that X̃ is in natural scale.

▶ Proposition 5.46 (scale function transformation of Dynkin’s diffusion). Let X be a regular one-
dimensional diffusion satisfying Dynkin’s conditions. Assume that s is continuously differentiable. Then
X̃ = s(X) is a regular one-dimensional diffusion on s(I) (where I is the state space of X), which satisfies
Dynkin’s conditions with drift µ̃(y) = 0, and diffusion coefficient σ̃(y) given by

σ̃2(y) = σ2(x) (s′(x))
2
, y = s(x) ∈ s(I).

▶ Proposition 5.47 (arbitrary transformation of Dynkin’s diffusion). Let X be a regular one-dimensional
diffusion on I satisfying Dynkin’s conditions with drift coefficient µX(x) and diffusion coefficient σX(x).
Let g be a function on I, which is twice continuously differentiable and | g′(x) | ≠ 0 on int(I). Then
Y = g(X) is also a regular one-dimensional regular diffusion on g(I) satisfying Dynkin’s condtions with
drift coefficient µY (y) and diffusion coefficient σ2

Y (y). If y = g(x), then we have

µY (y) =
σ2
X(x)g′′(x)

2
+ µX(x)g′(x), σ2

Y (y) = σ2
X(x)(g′(x))2.

▶ Example 5.48 (application to geometric Brownian motion). Let us compute the generator of the
geometric Brownian motion. LetX = (Xt)t≥0 be a Brownian motion with drift, that isXt = X0+µt+σBt,
t ≥ 0. Then Y = g(Xt) = eX = (eXt)t≥0 is called geometric Brownian motion. From Example 5.42, we
have µX(x) = µ and σ2(x) = σ2. Moreover, the transformation g(x) = ex is infinitely many continuously
differentiable, always strictly positive, and the state space of Y is (g(−∞), g(∞)) = (0, infty). Let
y = g(x) = ex, i.e. x = ln(y) for y ∈ I = (0,∞). By 5.47, Y is a regular one-dimensional diffusion
satisfying Dynkin’s conditions with

µY (y) =
σ2

2
ex + µex =

(
µ+

σ2

2

)
y, σ2

Y (y) = σ2(ex)2 = σ2y2.

Hence, the generator of the geometric Brownian motion is given by

AY =

(
µ+

σ2

2

)
y
d

dy
+

σ2y2

2

d2

dy2
.
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Let us now give a result on how to compute the speed measure.

▶ Proposition 5.49 (speed measure for Dynkin’s diffusion in natural scale). Let X be a regular one-
dimensional diffusion in natural scale satisfying Dynkin’s conditions. Let σ(x) be the diffusion coefficient.
Then the speed measure on int(I) is given by

m(dx) =
2 dx

σ2(x)
, x ∈ int(I).

▶ Theorem 5.50. Let m(dx) = m′(x) dx on int(I), where m′(x) is continuous and strictly positive on
int(I). The process in natural scale with speed measure m satisfies Dynkin’s conditions with µ(x) = 0 and
σ2(x) = m′(x)/2.

5.8 Characteristic Operator and Boundary Problems

This section will link the diffusion with the differential equations. In one dimensional case, the problem
will related to the ordinary differential equations (ODEs). Recall Definition 5.32 and Proposition 5.33,
the definition of infinitesimal generator is

Af(x) = lim
t→0

Ex[f(X)t]− f(x)

t
, f(x) ∈ DA.

Let us first discuss the notion of characteristic operator. For any x ∈ I, let Jn be a sequence
of open neighborhoods of x converging to Jn ↓ x. For example, one can take x ∈ (ℓ, r), and JN =
(x−N−1, x+N−1). Let

σJn
= inf{t > 0 : Xt ̸= Jn}

be the first time the diffusion leaves Jn.

▶ Proposition 5.51. Let f ∈ DA and x be instantaneous. Then, for any sequence Jn of bounded open
neighborhoods of x converging to Jn ↓ x,

Af(x) = lim
Jn↓x

Ex[f(XσJn
)]− f(x)

Ex[σJn
]

Using this proposition, we can extend the notion of infinitesimal generator.

▶ Definition 5.52 (characteristic operator). We say that f belongs to the domain of the characteristic
operator and write f ∈ DA if

Af(x) := lim
Jn↓x

Ex[f(XσJn
)]− f(x)

Ex[σJn
]

exists for all x. We call A the characteristic operator of the diffusion X.

▶ Corollary 5.53. If f ∈ DA, then f ∈ DA and Af = Af .

We now connect the regular one-dimensional diffusion with boundary problems of second order
differential equations. Let X be a regular one-dimensional diffusion with the infinitesimal generator
(A,DA). Let us define

u(x) = Ex[F (Xτa,b
)]

v(x) = Ex

(∫ τa,b

0

g(Xt) dt

)
where F : {a, b} → R and g : C → R. Then,

(1) u(x) satisfies the following Dirichlet problem:

Au = 0, x ∈ C, u(x) = F (x), x ∈ {a, b};

(2) v(x) satisfies the following Dirichlet-Poisson problem:

Av = −g, x ∈ C, v(x) = 0, x ∈ {a, b}.
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▶ Example 5.54. Let X = (Xt)t≥0 be a standard Brownian motion started at x ∈ R under Px. Namely,
Xt = x+Bt, where B = (Bt)t≥0 is the standard Brownian motion started at 0. Compute the function
u(x) = Px(τ1 < τ−1), for x ∈ [−1, 1].

Note that u(x) = Ex[1τ1<τ−1
] = Ex[F (x)], where F (−1) = 0 and F (1) = 1. Moreover, the infinitesimal

generator of X is

A =
1

2

d2

dx2
.

Hence, we have u(x) satisfies the Dirichlet problem,

Au(x) = 0 =⇒ u′′(x)

2
= 0, x ∈ (−1, 1)

u(−1) = 0, u(1) = 1.

Solving this second order differential equation gives u(x) = (x+ 1)/2 for x ∈ [−1, 1]. Notice, this is the
scale function of Xt in [−1, 1].

▶ Example 5.55. Under the same setting with the previous example, we would like to compute
v(x) = Ex[τ−1,1]. Notice that v(x) can be written as

v(x) = Ex[τ−1,1] = Ex

(∫ τ−1,1

0

1 dt

)
.

Therefore, we have the following Dirichlet-Poisson problem,

Av = −g =⇒ v′′(x)

2
= −1, x ∈ (−1, 1),

v(−1) = 0, v(1) = 0.

The general solution gives v(x) = 1− x2.

5.9 Backward and Forward Kolmogorov Equations

▶ Theorem 5.56 (Kolmogorov equations). Consider a regular one-dimensional diffusion X with
transition operators (Pt)t≥0 and a generator (A,DA). Then, for all f ∈ DA, Ptf ∈ DA, the following two
equation holds:

(1) backward Kolmogorov equation
d

dt
Ptf = APtf, t > 0, (5.19)

(2) forward Kolmogorov equation
d

dt
Ptf = PtAf, t > 0. (5.20)

Suppose now that X satisfies Dynkin’s conditions with drift coefficient µ(x) and diffusion coefficient
σ(x). Fix f ∈ C2

0 (I) ⊂ DA, and denote f(t, x) = Ptf(x) and recall that for Dynkin’s diffusion

A = µ(x)
d

dx
+ σ2(x)

d2

dx2
.

Then (5.19) becomes a second order differential equation

∂f(t, x)

∂t
= APtf = µ(x)

∂f(t, x)

∂x
+

σ2(x)

2

∂2f(t, x)

∂x2
, (5.21)

with the initial condition f(0, x) = P0f(x) = f(x).

▶ Example 5.57. Consider the generator A = 1
2

d2

dx2 . Then, (5.21) becomes

∂f(t, x)

∂t
=

1

2

∂2(t, x)

∂x2
, f(0, x) = f(x), x ∈ R,
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5 ONE-DIMENSIONAL REGULAR DIFFUSION 5.9 Backward and Forward Kolmogorov Equations

which is the heat equation. The general solution for heat equation with initial condition is given by

f(t, x) =
1√
2πt

∫
R

exp

(
− (x− y)2

2t

)
f(y) dy

and

G(t, x, y) =
1√
2πt

exp

(
− (x− y)2

2t

)
is called the Green function of the heat equation. Notice that, this is a transition density of the standard
Brownian motion.

If the transition density pt(x, y) of diffusion X exists and is sufficiently smooth then it can be found
directly from the following theorem.

▶ Theorem 5.58 (backward equation for densities). Let X = (Xt)t≥0 be a regular one-dimensional
diffusion on R satisfying Dynkin’s conditions with bounded drift and diffusion coefficient µ(x) and σ(x).
Assume that X has transition density pt(x, y) which is continuously differentiable in t > 0 and twice
differentiable in x, which, together with its first derivative in time and second derivative in space, is
vanishing as x → ∞ for all t > 0. Then,

∂pt(x, y)

∂t
= µ(x)

∂pt(x, y)

∂x
+

σ2(x)

2

∂2pt(x, y)

∂x2
, t > 0, x, y ∈ R.

▶ Theorem 5.59 (forward equation for densities). Let X = (Xt)t≥0 be a diffusion on R satisfying
Dynkin’s conditions with drift coefficient µ(x) ∈ C(R) and diffusion coefficient σ2(x) ∈ C2(R). Assume
that the transition density pt(x, y) of X is such that p, ∂p/∂t, ∂p/∂y, and ∂2p/∂2y ∈ C((0,∞)×R×R).
Then Kolmogorov’s forward equation holds,

∂pt(x, y)

∂t
= −

∂
(
µ(y)pt(x, y)

)
∂y

+
1

2

∂2
(
σ2(y)pt(x, y)

)
∂y2

, t > 0, x, y ∈ R.
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