
Note on Krylov subspace methods∗

Zhengbo Zhou†

[1] Higham, N. J. (2023). Numerical linear algebra and matrix analysis. Unpublished
manuscript.

1 Introduction

The kth Krylov subspace of A ∈ Cn×n and a nonzero vector b ∈ Cn is defined by

Kk(A, b) = span{b, Ab, . . . , Ak−1b}.

In the Krylov subspace method for solving a linear system Ax = b, each iterate xk is
chosen from the shifted Krylov subspace x0 +Kk(A, r0), where r0 = b− Ax0, that is,

xk − x0 ∈ Kk(A, r0). (1.1)

We can rewrite (1.1) as

xk − x0 =
k−1∑
i=0

αiA
ir0 =: qk−1(A)r0,

where qk−1 is a polynomial of degree at most k − 1. Multiply by A gives,

Axk − Ax0 = Aqk−1(A)r0,

using the definition rk := b− Axk, we have

rk − r0 = Aqk−1(A)r0

or
rk = qk(A)r0,

where pk is a polynomial of degree at most k with qk(0) = 1. The minimal residual
method (MINRES) for symmetric matrix, and the generalized minimal residual method
(GMRES) for general A. In both cases, xk ∈ x0 +Kk(A, r0) to minimize ∥rk∥22.

∗Date: May 24, 2025, Manchester, UK
†Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom.

zhengbo.zhou@student.manchester.ac.uk

1

mailto:zhengbo.zhou@student.manchester.ac.uk

2 The Arnoldi Method

The Arnoldi process for A ∈ Cn×n attempts to compute the Hessenberg reduction
Q∗AQ = H, where Q ∈ Cn×n is unitary and H ∈ Cn×n is upper Hessenberg. Write
Q = [q1, . . . , qn] and equating kth columns in AQ = QH gives

Aqk =
k+1∑
i=1

hikqi, k = 1 : n− 1, (2.1)

and for the nth column we have

Aqn =
n∑

i=1

hinqi.

(2.1) may also be rewritten as

hk+1,kqk+1 = Aqk −
k∑

i=1

hikqi, k = 1 : n− 1. (2.2)

Using the fact that the columns of Q are orthonormal. By choosing an arbitrary j = 1 : k,
we have

q∗j qk+1hk+1,k = q∗jAqk −
k∑

i=1

hikq
∗
j qi.

Notice that the latter term is only nonzero if i is taken to be the same value as j.
Therefore, by choosing i = j, we have

0 = q∗jAqk − hjk ⇒ hjk = q∗jAqk, j = 1 : k.

Let us define rk := Aqk −
∑k

i=1 hikqi, the right hand side of (2.2). Then we can write
it as hk+1,kqk+1 = rk. If rk ̸= 0, then qk+1 = rk/hk+1,k, with hk+1,k = ∥rk∥2. If rk = 0,
the process will terminate within. Notice that, we have already obtain the algorithm
implicitly. Here, rk can be computed prior to qk, and the algorithm can proceed.

To illustrate the difference between the combined version and separate version as
discussed in Algorithm 1, we provide a small numerical experiment. Figure 1 shows the
backward error and the orthogonality error. We observe that using the combined version,
both error are significantly smaller than the separate one.

From (2.2), it follows by induction that

span{q1, . . . , qk} = span{q1, Aq1, . . . , Aqk−1},

that is, the Arnoldi vectors {qi}ki=1 form an orthonormal basis for the Krylov subspace
Kk(A, q1).

The eigenvalues of the Hessenberg matrix Hm produced by the Arnoldi process are
called Ritz values and the corresponding eigenvectors are Ritz vectors. If (λ, v) is an
eigenpair of Hk, then (λ,Qkv) is an approximate eigenpair of A.

After k stages, the Arnoldi process produces the factorization

AQk = QkHk + hk+1,kqk+1e
T
k , (2.3)

2

Algorithm 1. Arnoldi process with modified Gram-Schmidt orthogonalization.

Input: Given a square matrix A ∈ Cn×n, a starting vector q1 with unit 2 norm.
Output: A column-wise orthonormal matrix Q ∈ Cn×m and a upper Hessenberg matrix H ∈

Cm×m, such that A = QHQ∗.
1: for k = 1 : n do % For k = n, the only part that will be executed is

the generation of the nth column of H. Afterwards, the 2-norm of “hn+1,n” will definitely
becomes zero since there are only n basis for a n dimensional vector space.

2: wk = Aqk
3: for j = 1 : k do
4: hjk = q∗jwk

5: wk = wk − hjkqj
6: end for % When we started

from wk = Aqk, we generated the “temporary” (k+1)th basis. In order to make the newly
generated basis orthogonal to q1, . . . , qk, we need to delete the corresponding components,
as described in (2.1) and (2.2). However, the question is the definition of hjk is q∗jAqk, but
how can we keep “modify” Aqk, wk? The answer can be seen from (2.1). After the first

iteration, we get wk =
∑k+1

i=2 hikqi. In the second iteration, when pre-multiply q∗2 to wk, we
will not getting any contribution from h1kq1, even though in the scenario we do not remove
it, since q1 and q2 are constructed to be orthonormal. Therefore

q∗2

k+1∑
i=1

hikqi = q∗2

k+1∑
i=2

hikqi.

Therefore, removing the computed component is mathematically equivalent to the un-
removed version. The next question is why we doing in this removing approach. Firstly, one
should notice that if we do these two steps in the loop separately like:

for j = 1 : k do hjk = q∗jwk end for

for j = 1 : k do wk = wk − hjkqj end for

This is mathematically equivalent to the combined one. This approach is purely for numer-
ical consideration. Since in floating point arithmetic, the inner product of two orthonormal
vectors may not be zero but a small number about u, the unit roundoff. Therefore, without
removing the previous parts, it is possible that, at the kth step, all the vectors q1, . . . , qk−1

will contaminate the entries of H, which leads to an inaccurate decomposition.
7: if ∥wk∥2 = 0 then
8: quit
9: else
10: hk+1,k = ∥wk∥2
11: end if
12: qk+1 = wk+1/hk+1,k % Normalize the generated vector.
13: end for

3

101 102 103

10−15

10−14

10−13

10−12

10−11

10−10

Matrix size n

∥A
−

Q
H
Q

∗ ∥
∞
/∥
A
∥ ∞

Combined-Arnoldi
Separate Arnoldi

(a) Backward error

101 102 103

10−14

10−12

10−10

10−8

Matrix size n

∥Q
∗ Q

−
I
∥ ∞

Combined-Arnoldi
Separate Arnoldi

(b) Orthogonality error

Figure 1: Behavior of the backward error and the orthogonality error for computed
Hessenberg reduction using combined and separate version of Algorithm 1. The test
matrix is generated with randn(n).

where Qk = [q1, . . . , qk] and Hk = (hij) is k × k upper Hessenberg. From (2.3), we have

AQkv = QkHkv + hk+1,kqk+1e
T
k v = λQkv + hk+1,kvkqk+1,

where vk is the kth entry of v, so that

∥(A− λI)Qkv∥2 = |hk+1,k||vk|. (2.4)

Therefore, if one wants to test the convergence of the eigensolver, it is no need to form
Qkv. Only monitoring the subdiagonal elements of H and the last coordinate of its
eigenvalue is sufficient.

If hk+1,k = 0, then (2.4) implies (λ,Qkv) is an exact eigenpair of A. In this case,
AQk = QkHk by (2.3), so the columns of Qk span an invariant subspace of A, and all the
eigenvalues of H are eigenvalues of A.

3 The Generalized Minimal Residual Method

Any vector x in the shifted Krylov subspace x0+Kk(A, r0) can be written as x = x0+Qky
for some y ∈ Ck, where columns of Qk ∈ Cn×k are a basis for Kk(A, r0). The GMRES
method minimizes

r = b− Ax = b− Ax0 − AQky = r0 − AQky (3.1)

over all y. In order to do so, it needs to build the matrix Qk using the Arnoldi process
(Algorithm 1).

Suppose we run the Arnoldi process with q1 = r0/β, where β = ∥r0∥2. We can rewrite
(2.3) as

AQk = QkH̃k, H̃k =

[
Hk

hk+1,ke
T
k

]
(3.2)

4

Then using (3.1) and (3.2), we have

r = r0 − AQky (3.3)

= r0 −Qk+1H̃ky

= βq1 −Qk+1H̃ky

= Qk+1(βe1 − H̃ky) (3.4)

and hence
∥r∥2 = ∥βe1 − H̃ky∥2,

since Qk+1 has orthonormal columns. Then minimizing r over all y reduces to a least
square problem with an (m+ 1)×m Hessenberg coefficient matrix, which can be solved
by Givens QR factorization in O(m2) flops. The GMRES method combines the
Arnoldi process with solution of the least square problem (3.4).

Algorithm 2. GMRES - Arnoldi process with least square solution

Input: A ∈ Cn×n, b ∈ Cn and a starting vector x0 ∈ Cn.
Output: A solution x ∈ Cn that solves the linear system Ax = b.
1: m = n, r0 = b−Ax0, β = ∥r0∥2, q1 = r0/β
2: for k = 1 : m do
3: wk = Aqk
4: for i = 1 : k do
5: hi,k = q∗iwk

6: wk = wk − hikqi
7: end for
8: hk+1,k = ∥wk∥2
9: if hk+1,k = 0 then
10: Set m = k and quit the loop
11: end if
12: qk+1 = wk/hk+1,k

13: end for
Until now, this is simply Algorithm 1, the Arnoldi process for constructing a Hessenberg
reduction. Now, we have AQk = QkH̃k as shown in (3.2).

14: Compute the solution ym for the least square problem minym ∥βe1 − H̃mym∥2. Here, we set

H̃m = Hm if hm+1,m = 0.
15: Recover the solution via x = x0 +Qm+1ym or x = x0 +Qmym if hm+1,m = 0.

GMRES requires O(mn2) flops for a full matrix (the dominant cost is the matrix-
vector product on Line 3) and O(mn) elements of storage for Qm. If m is large, the
computation and storage costs are both prohibitive. Therefore, it is common to terminate
the algorithm prematurely and restart it: the iteration stops after p ≪ n iterations and
reruns using the current approximation xp as a new starting vector x0. The method with
restarts after every k iterations is denoted by GMRES(k).

References

[1] Nicholas J. Higham. Numerical linear algebra and matrix analysis. Unfinished book (Version
2023 June 23), 2023. (Cited on p. 1)

5

	Introduction
	The Arnoldi Method
	The Generalized Minimal Residual Method

