
Note on Iterative Refinement∗
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1 Iterative Refinement

Let us introduce iterative refinement before getting to linear system. Iterative refinement
is usually used to bring the error or residual down to the level of the unit roundoff.
The reason why the initial error exceeds the unit roundoff could be ill conditioning of
the problem, numerical instability in the method used, or the use of lower precision
arithmetic.

We begin with the Newton’s method since iterative refinement can be seen as the
application of the Newton’s method.

1.1 Newton’s method

Definition 1.1 (Jacobian matrix [4, Def. 4.3]). Let F = (F1, . . . , Fn)
T : Rn 7→ Rn be a

function defined and continuous in an (open) neighborhood of ξ ∈ Rn. Suppose further
that the first partial derivatives ∂Fi/∂xj, j = 1, . . . , n, of Fi exist at ξ for i = 1, . . . , n.
The Jacobian matrix JF (ξ) of F at ξ is the n× n matrix defined by

(
JF (ξ)

)
ij
=
∂Fi

∂xj
(ξ), i, j = 1, . . . , n.

We drop the subscript of the Jacobian matrix if the function is obvious.

Definition 1.2 (Newton’s method [4, Def. 4.5]). For a nonlinear system F (x) = 0, where
F : Rn 7→ Rn. The Newton’s method is defined by

xi+1 = xi −
(
J(xi)

)−1
F (xi), i = 0, 1, . . . , (1.1)

or equivalently,
J(xi)(xi+1 − xi) = −F (xi),

The next theorem provides the convergence result for the Newton’s method.

Theorem 1.3 ([3, Thm. 5.1.1]). For a nonlinear system F (x) = 0. Provided that:

• there exists a solution x∗ to the system,
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• F ′(x) is Lipschitz continuous with Lipschitz constant γ, and

• F ′(x∗) is nonsingular.

Then there exists δ > 0 such that if ∥xi−x∗∥ < δ, then the Newton iterate from x0 given
by (1.1) satisfies

∥xi+1 − x∗∥ ≤ γ∥J(x∗)
−1∥∥xi − x∗∥2. (1.2)

Here, δ needs to be small enough such that [3, Lem. 4.3.1] holds.

Algorithm 1. Mixed-precision Newton’s method

Input: A vector function F ; a starting vector x0; three precisions uℓ, u and ur (ur ≤ u ≤ uℓ).
Output: A solution x∞ to the system F (x) = 0.
1: for i = 1 : ∞ do
2: Compute fi = F (xi) in precision ur.
3: Solve J(xi)di = −fi in precision uℓ.
4: Update xi+1 = xi + di in precision u.
5: end for

Algorithm 1 is a mixed precision implementation of the Newton’s method. By using
more than one precision, the algorithm gives flexibility to become faster or more accurate.
The floating point treatment of the Newton’s method is given by Tisseur [5] or in the
review by Higham and Mary [2].

It is well-known that Newton’s method must be provided with accurate function values
in order to produce an accurate solution. Hence ur ≤ u.

Also, it is well-known that Newton’s method can tolerate errors in the solving step
(including forming the Jacobian and solving the linear system); variants of Newton’s
method use a finite difference approximation to the Jacobian or freeze the Jacobian, for
example using J(x0) over J(xi), at the cost of possible reducing the rate of convergence
to linear. Hence we take uℓ ≥ u.

1.1.1 Rounding Error Analysis

The computed iterate x̂i+1 from Algorithm 1 can be written as

x̂i+1 = x̂i −
(
J(x̂i) +∆Ji

)−1(
F (x̂i) +∆fi) + εi, (1.3)

where

• ∆fi is the error made in computing F (x̂i), which we assume satisfies a bound of
the form, for some function ψ,

∥∆fi∥ ≤ ψ(F , x̂i, u, ur) + uℓ∥F (x̂i)∥;

• ∆Ji combines the error incurred in forming J(x̂i) with the backward error for
solving the linear system for di and is bounded in terms of u and uℓ; and

• εi is the error in the addition that forms xi and is bounded in terms of u.
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We are interested in the limiting accuracy, the smallest relative error that is guaran-
teed to be achieved. Under conditions of Theorem 1.3, the limiting accuracy is

∥x̂− x∗∥
∥x∗∥

≈ ∥J(x∗)
−1∥

∥x∗∥
ψ(F ,x∗, u, ur) + u. (1.4)

We also interested in the limiting residual, the smallest residual that is guarantee to be
achieved, which is

∥F (x̂)∥ ≈ ψ(F , x̂, u, ur) + u∥J(x̂)∥∥x̂∥. (1.5)

Notice that, neither the limiting accuracy nor the limiting residual depends on the errors
in evaluating J or in solving the linear system.

1.2 Iterative refinement for linear system

We now consider the iterative refinement for linear system.

Lemma 1.4. The Newton’s method for the linear system Ax = b, where A ∈ Rn×n and
b ∈ Rn is defined as

xi+1 = xi + di,

where di is obtained by solving Adi = ri := b− Axi, for i = 1, 2, . . . .

We call ri the residual.

Proof. Consider the vector-valued function F (x) = Ax− b. Solving the linear system is
equivalent to finding a zero for F (x). Let us now determine the Jacobian matrix for F .
We have Fi =

∑n
k=1 aikxk − bi. Then by Theorem 1.1,

∂(JF )i
∂xj

=
∂
(∑n

k=1 aikxk − bi

)
∂xj

= aij.

Namely, JF (x) = A. As a result,

xi+1 = xi + di, where Adi = −F (xi) := b− Axi.

Denote the last part as ri gives the iteration.

Algorithm 2. Newton’s method for linear system.

Input: A nonsingular matrix A ∈ Rn×n; b ∈ Rn; an initial approximation x0 ∈ Rn; three
precisions ur, u and us (ur ≤ u ≤ us). Initially, A, b and x0 are stored at u.

Output: A sequence of approximation xi, all stored in precision u, to the solution of Ax = b.
1: for i = 0 : ∞ do
2: Compute ri = bi −Axi in precision ur.
3: Solve Adi = ri in precision us.
4: Update xi+1 = xi + di in precision u.
5: end for
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1.2.1 Iterative Refinement for a General Linear System Solver

We begin by considering the use of an arbitrary method for solving the update equation
Adi = ri.

In floating point arithmetic, Algorithm 2 does not, in general, converge, and if it
does it may not converge to the exact solution, as the exact solution may not exactly
representable in precision u. The focus is to know the limiting accuracy and the limiting
residual.

Carson and Higham [1] give a rounding error analysis that takes account of all the
errors in Algorithm 2. Let us summarize the result. We use hats to denote computed
quantities. We assume the solver on line 3 of Algorithm 2 produce a computed d̂i that
satisfies the conditions

∥di − d̂i∥∞
∥di∥∞

≤ usθ < 1, (1.6)

∥r̂i − Ad̂i∥∞ ≤ us
(
f1∥A∥∞∥d̂i∥∞ + f2∥r̂i∥∞

)
, (1.7)

where f1 and f2 are functions of n,A, r̂i and us. (1.6) focused on the relative forward
error, whereas (1.7) focused on the backward error. Let us define

µi =
∥A(x− x̂i)∥∞
∥A∥∞∥x− x̂i∥∞

≤ 1. (1.8)

and the componentwise condition number

cond(A,x) =
∥ |A−1| |A| |x| ∥∞

∥x∥∞
.

Theorem 1.5 (limiting accuracy). Let Algorithm 2 be applied to a linear system Ax = b,
where A ∈ Rn×n. If

ϕi = (2min{cond(A), κ∞(A)µi}+ θ)us

is sufficiently less than 1 for each i. Then the forward error is reduced on the ith iteration
by a factor approximately ϕi until an iterate x̂ is produced for which

∥x̂− x∥∞
∥x∥∞

≤ u+ 4ncond(A,x)ur.

Remark 1.6. A backward stable solver such as LU decomposition with partial pivoting
in precision u produces a computed solution x̂ to Ax = b satisfies

∥b− Ax̂∥∞
∥A∥∞∥x̂∥∞

≤ cnu,

for some modestly growing constant cn. Iterative refinement would worsen the backward
error. However, if A is ill conditioned then the early iterates are likely to have a large
forward error, of order κ∞(A)u. We therefore expect that

∥b− Ax̂i∥∞
∥A∥∞∥x̂i∥∞

≈ u≪ ∥x̂− x∥∞
∥x∥∞

≈ κ∞(A)u,
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in early iterations. By assuming ∥x̂i∥∞ ≈ ∥x∥∞,

1

κ∞(A)
≤ ∥b− Ax̂i∥∞

∥A∥∞∥x− x̂i∥∞
≪ 1.

Namely, κ∞(A)−1 ≤ µi ≪ 1.

The next theorem describe the limiting residual

Theorem 1.7 (limiting residual). Let Algorithm 2 be applied to a linear system Ax = b,
where A ∈ Rn×n is nonsingular. If ψ = (f1κ∞(A) + f2)us is sufficiently less than 1, then
the residual is reduced on each iteration by a factor approximately ψ until an iterate x̂ is
produced for which

∥b− Ax̂∥∞
∥b∥∞ + ∥A∥∞∥x̂∥∞

≤ nur + u.

1.3 Generalized Minimal Residual method (GMRES)

The GMRES is a projection method based on taking K = Km and L = AKm, in which
Km is the mth Krylov subspace with v1 = r0/∥r0∥2. Such a technique minimizes the
residual norm over all vectors in x0 +Km.

1.3.1 GMRES-based Iterative Refinement

The conditions on ϕi and ψ in Theorems 1.5 and 1.7 mean that the use of low precision
arithmetic with us ≫ u will succeed only when A is well conditioned, which is a significant
limitation.

One cure is using approximate LU factors as preconditioner for the solving stage.

Algorithm 3. Iterative refinement with GMRES (GMRES-IR5)

Input: A nonsingular matrix A ∈ Rn×n stored in precision u, b ∈ Rn stored in precision u, and
five precisions up, ur, u, ug and uℓ (max(up, ur) ≤ u ≤ ug ≤ uℓ).

Output: A sequence of approximations xi, all stored in precision u, to the solution Ax = b.
1: Compute the factorization A = LU in precision uℓ.
2: Solve LUx0 = b by substitution in precision uℓ.
3: for i = 1 : imax or until converge do
4: Compute ri = b−Axi−1 in precision ur.

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES in precision ug, while performing the

products with Ã in precision up.
6: Update xi = xi−1 + di in precision u.
7: end for

References

[1] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM Journal on Scientific Computing, 40(2):A817–A847,
2018. (Cited on p. 4)

5

https://doi.org/10.1137/17m1140819
https://doi.org/10.1137/17m1140819


[2] Nicholas J. Higham and Theo Mary. Mixed precision algorithms in numerical linear algebra.
Acta Numerica, 31:347–414, 2022. (Cited on p. 2)

[3] Carl T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, January 1995. xiii+156 pp. ISBN 978-
0-89871-352-7. (Cited on pp. 1, 2)
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