
Note on changing precision and scaling∗

Zhengbo Zhou†

Contents

1 hpz19 1
1.1 Traditional treatments . 2
1.2 Diagonal scaling then round . 3
1.3 Determine diagonal scaling matrices . 3
1.4 Discussion . 5

2 hipr21 5

3 okca22 5

4 sctu24 6

5 sctu25 6

6 hbtd20 6

7 What does LAPACK do? 6

1 hpz19

[8] Higham, Pranesh & Zounon, Squeezing a Matrix into Half Precision, with an Ap-
plication to Solving Linear Systems, SIAM Journal on Scientific Computing 41,
A2536–A2551, 2019

Let α be a number stored in half precision. Then, |α| ∈ [6× 10−8, 7× 104]. Since it is
so limited, therefore a straightforward rounding of single and double precision data into
half precision can leads to overflow, underflow or subnormal numbers, all of which are
undesirable.

Higham, Pranesh and Zounon [8] developed an algorithm for converting a matrix from
single or double precision to half precision. We states its outline:

(1) perform two-sided diagonal scaling in order to equilibrate the matrix (ensure every
row and column has ∞-norm 1);

∗Date: March 26, 2025, Manchester, UK
†Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom.

zhengbo.zhou@student.manchester.ac.uk

1

mailto:zhengbo.zhou@student.manchester.ac.uk

(2) multiply by a scalar to bring the largest element within a factor θ ≤ 1 of the
overflow level;

(3) round to half precision.

The usage of half precision has the drawback that the elements of the matrix A may
overflow or underflow when rounded to half precision. To see why, consider Table 1.

Table 1. Parameters for bfloat16, fp16, fp32, fp64 and fp128 arithmetic, to three significant figures:
unit roundoff u, smallest positive (subnormal) number xs

min, smallest normalized positive number xmin,
and largest finite number xmax.

u xs
min xmin xmax

bfloat16 3.91× 10−3 9.18× 10−41 1.18× 10−38 3.39× 1038

fp16 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

fp128 9.63× 10−35 6.48× 10−4966 3.36× 10−4932 1.19× 104932

When rounded to fp16, any double precion number with magnitude on the interval
[6.6× 104, 1.8× 10308] will overflow, and any double precision number with magnitude on
the interval [2.2 × 10−308, 5.9 × 10−8] will underflow. Overflow is unrecoverable, because
common factorizations cannot produce useful results for a matrix with infinities amongst
its entries. Underflow during the rounding could cause a serious loss of information;
moreover, the rounded matrix could have a zero row or column and hence be structurally
singular.

The work on iterative refinement [3, 5, 6] all discussed the possibility of overflow,
underflow and potential instability of using fp16.

1.1 Traditional treatments

Let A(h) be the matrix that rounded to half precision. Traditional treatment for over-
flow maps the overflowed numbers to the nearest largest representable number, ±xmax.
Algorithm 1 is a litte more general. This algorithm with θ = 1 is the approach used
in [3, 5, 6].

Algorithm 1 Round then replace infinities. Mapping any elements of modulus greater
than θxmax to ±θxmax.

Input: A ∈ Rn×n; θ ∈ (0, 1].

Output: The rounded fp16 matrix A(h) ∈ Rn×n.
A(h) = flh(A)

For every i, j such that |aij| ≥ θxmax, set a
(h)
ij = sign(aij)θxmax.

Another approach is to scale the matrix before rounding. Algorithm 2 ensures the
largest entry in magnitude is θxmax. In particular, the gap between amax and amin where
amin = mini,j|ai,j| is retained after scaling and rounding if underflow does not occur.

2

Algorithm 2 Scale by scaler then round. Scaling all elements to avoid overflow.

Input: A ∈ Rn×n; θ ∈ (0, 1].

Output: The rounded fp16 matrix A(h) ∈ Rn×n.
amax = maxi,j|aij|
µ = θxmax/amax

A(h) = flh(µA)

1.2 Diagonal scaling then round

Algorithms 1 and 2 have the following drawbacks.

1. Algorithm 1 makes a potentially large perturbation for every element that overflows,
so it can make a large change to the matrix.

2. When amax > xmax, Algorithm 2 reduces every element in magnitude, so it increases
the risk of underflow.

To address these issues, we consider the following class of algorithms: carry out two-
sided diagonal scaling prior to converting to fp16, which replace A by RAS,

R = diag(ri), S = diag(si), ri, si > 0, i = 1 : n.

There is no clear conclusion on when or how one should scale; see [2] for a experimental
study. In any case, the focus of scaling algorithms in [8] is different from that in previous
studies, where the aim of scaling has been to reduce the condition number or to speed
up the converegnce. We scale in order to help squeeze a single or double precision matrix
into half precision.

Our proto-algorithm for two-sided scaling is given in

Algorithm 3 Two-sided diagonal scaling then round.

Input: A ∈ Rn×n; θ ∈ (0, 1].

Output: The rounded fp16 matrix A(h) ∈ Rn×n.
1: Apply any two-sided diagonal scaling algorithm to A, to obtain diagonal matrices R

and S.
2: Let β = maxi,j |(RAS)ij|
3: µ = θxmax/β

4: A(h) = flh(µ(RAS))

Lines 2–4 are essentially applying Algorithm 2 to RAS.

1.3 Determine diagonal scaling matrices

We now consider two different algorithms for determining R and S; both algorithms are
carried out at working precision. We first consider row and column equilibration.

This scaling ensures that every row and column has maximum element in modulus
equal to 1. The LAPACK routine xyyEQU carry out this form of scaling [1]. Notice
that, Algorithm 3 applies row scaling before the column scaling. If the column scaling is

3

Algorithm 4 Row and column equilibration.

Input: A ∈ Rn×n that has no zero row or column.
Output: Nonsingular diagonal matrices R and S such that B = RAS has the property

that maxk|bik| = maxk|bkj| = 1 for all i, j ∈ [1, n].

1: for i = 1 : n do ri = ∥A(i, :)∥−1
∞ end for

2: R = diag(r)

3: Ã = RA
4: for j = 1 : n do si = ∥Ã(:, j)∥−1

∞ end for
5: S = diag(s)

applied first, a different result may be obtained. The result have the same characteristic
scaling property, but the conditioning may be very different.

If the input matrix is symmetric then Algorithm 3 will generally destroy symmetry.
Algorithm 5 preserves the symmetry [10].

Algorithm 5 Symmetry-preserving row and column equilibration

Input: A ∈ Rn×n; tol > 0 is a convergence tolerance.
Output: Nonsingular diagonal matrices R and S such that B = RAS has the property

that maxk|bik| = maxk|bkj| = 1 for all i, j ∈ [1, n]. R = S if A is symmetric.
1: R = I, S = I.
2: while maxi |ri − 1| ≤ tol and maxi |si − 1| ≤ tol do
3: for i = 1 : n do
4: ri = ∥A(i, :)∥−1/2

∞
5: si = ∥A(:, i)∥−1/2

∞
6: end for
7: A← diag(r)A diag(s)
8: R← diag(r)R
9: S ← S diag(s)
10: end while

The algorithm 5 is iterative and scales simultaneously at both sides. It has the
properties that

1. if A = AT , then R = S;

2. then algorithm is permutation invariant: if it produces the scaling RAS for A, then
it produces the scaling P1RP T

1 (P1AP2)P
T
2 SP2 for P1AP2;

3. it is linearly convergent with asymptotic convergence rate 1/2.

We note that β in line 2 of Algorithm 3 is equal to 1 for Algorithms 4 and 5.
Other two-sided diagonal scaling algorithms exists, including Hungarian scaling [9]

and other algorithms discussed by Larsson [11]. [8] mentioned they does not find any
clear benefit of doing other algorithms.

4

1.4 Discussion

How do Algorithm 1, Algorithm 2, and Algorithm 3 with Algorithm 4 or Algorithm 5
compare for converting a matrix to fp16? Depending on the usage of the fp16 matrix
A(h), several possible criteria may be of interest.

1. As few elements as possible should underflow or become nonzero but unnormalized.

2. Key properties of the original matrix, such as singular values or condition number,
should be preserved as much as possible.

The important insight in [8] is that after compute an LU factorization of A(h), they

refine their solution in context of Ax = b instead of A(h)y = b(h). This can be achieved
using a carefully constructed preconditioner. In fact, not only the scaled and unscaled
algorithms are mathematically equivalent. There are even a numerical equivalence.

In conclusion, [8] developed a new conversion algorithm that employs two-sided di-
agonal scaling along with a potential scalar multiplication that moves the elements of
largest magnitude close to the overflow threshold.

It seems that they are not mentioning the underflow and subnormal num-
bers generation.

Their code is available here https://github.com/SrikaraPranesh/fp16Scaling.

2 hipr21

[7] Higham & Pranesh, Exploiting Lower Precision Arithmetic in Solving Symmetric
Positive Definite Linear Systems and Least Squares Problems, SIAM Journal on
Scientific Computing 43, A258–A277, 2021

In section 3.1, they discuss about scale the matrix A to H = D−1AD−1, D =
diag(a

1/2
ii). The matrix D wil be kept at working precision u. The aim is to reduce

the dynamic range in order to avoid overflow and reduce the chance of underflow in
conversion to lower precision.

This is needed for fp16, but it is usually not necessary for bfloat16 and single
precision. ... We note that we could choose D to have diagonal elements that
are powers of 2, to avoid rounding errors, but in our experience doing so
brings no practical benefits.

This is same as the scaling in Algorithm 5. H is positive definite (Sylvester law of
inertia) with diagonal entries 1, and |hij| <

√
hiihjj = 1. Hence, the row and column

equilibration is succeed with the largest elements all located along the diagonal. In fact,
R and S converges to D if A is symmetric positive definite.

3 okca22

[12] Oktay & Carson, Multistage mixed precision iterative refinement, Numerical Linear
Algebra with Applications 29, 2022

5

https://github.com/SrikaraPranesh/fp16Scaling

They use the conversion algorithm 3. They first attempt an LU factorization without
scaling. They then test whether the result L and U factors contain Inf or NaN; if so, they
retry the LU factorization using the two-sided scaling algorithm. Also, after compute the
approximation solution x0 for the GMRES-IR, if x0 contains Inf or NaN, then simply use
a zero vector as the input to the GMRES-IR.

In addition, they also incorporate scaling in each refinement step. After computing
the residual ri, they scale the result to obtain ri ← ri/∥ri∥∞. This scaling is then undone
when they update the approximate solution, via xi+1 = xi + ∥ri∥∞di+1. As long as
1/∥A∥∞ does not overflow and ∥A−1∥∞ does not overflow, this scaling avoids the largest
element of di+1 overflowing or underflowing.

4 sctu24

[14] Scott & Tøuma, Avoiding Breakdown in Incomplete Factorizations in Low Precision
Arithmetic, ACM Transactions on Mathematical Software 50, 1-25, 2024

Uses 2-norm scaling, i.e. entries in column j of A are normalized by the 2-norm of
column j [13, Sec. 3.2.3].

5 sctu25

[15] Scott & Tůma, Developing robust incomplete Cholesky factorizations in half pre-
cision arithmetic, Numerical Algorithms 2025

In practice, numbers with small absolute values are often flushed to zero since the
factorization is approximated anyway. This work also uses the 2-norm scaling which is
the same as in [14].

6 hbtd20

[4] Haidar, Bayraktar, Tomov, Dongarra & Higham, Mixed-precision iterative refine-
ment using tensor cores on GPUs to accelerate solution of linear systems, Proceed-
ings of the Royal Society of London. Series A, Mathematical and Physical Sciences
476, 2020.

Similarly, it can only avoid overflow and reduce underflow. They suggested using
Algorithm 3, which can reduce the possibility of underflow by balancing.

7 What does LAPACK do?

safmin = dlamch('Safe minimum')

eps = dlamch('Precision')

smlnum = safmin / eps

bignum = one / smlnum

rmin = sqrt(smlnum)

6

rmax = sqrt(bignum)

anrm = dlansy('M', uplo, n, a, lda, work)

iscale = 0

IF(anrm.GT.zero .AND. anrm.LT.rmin) THEN

iscale = 1

sigma = rmin / anrm

ELSE IF(anrm.GT.rmax) THEN

iscale = 1

sigma = rmax / anrm

END IF

IF(iscale.EQ.1)

CALL dlascl(uplo, 0, 0, one, sigma, n, n, a, lda, info)

This part of code is from LAPACK routine dsyev. For all symmetric solvers in
LAPACK, they will perform similar scaling.

smlnum =
xmin

2u
, bignum =

1

smlnum

Here, 2u is the machine precision (mathematically). Divided by 2u ensures the division
by tiny number gives meaning digits. Taking the square roots ensures the column norms
or any kind that requires the square of an entry does not overflow.

When the largest element is below smlnum, it will lift all the elements up until the
largest element meet smlnum. On the other hands, when the largest element is above
bignum, it will lower all the elements down until the largest element meet bignum. There-
fore, underflow may still exists.

Remark 7.1. It is interesting that no one cares about underflow too much. It seems the
most important thing is not to overflow.

Remark 7.2. For dgesvj (one-sided Jacobi), it scales the column norm such that no
overflow will appear. It has two vectors relate to the singular values, the square roots of
the column norms and their scaling factors.

References

[1] Edward Anderson, Zhaojun Bai, Christian Bischof, L. Susan Blackford, James Demmel,
Jack J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney,
and Danny Sorensen. LAPACK Users’ Guide. Third edition, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1999. xxi+429 pp. ISBN 0-89871-447-8
(paperback). (Cited on p. 3)

[2] Joseph M. Elble and Nikolaos V. Sahinidis. Scaling linear optimization problems prior to
application of the simplex method. Computational Optimization and Applications, 52(2):
345–371, 2011. (Cited on p. 3)

[3] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara Pranesh, Sta-
nimire Tomov, and Jack Dongarra. The design of fast and energy-efficient linear solvers:
on the potential of half-precision arithmetic and iterative refinement techniques, chapter
Part I, pages 586–600. Springer International Publishing AG, 2018. ISBN 9783319936987.
(Cited on p. 2)

7

http://doi.org/10.1137/1.9780898719604
https://doi.org/10.1007/s10589-011-9420-4
https://doi.org/10.1007/s10589-011-9420-4
http://doi.org/10.1007/978-3-319-93698-7_45
http://doi.org/10.1007/978-3-319-93698-7_45

[4] Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas J.
Higham. Mixed-precision iterative refinement using tensor cores on GPUs to accelerate
solution of linear systems. Proceedings of the Royal Society of London. Series A, Mathe-
matical and Physical Sciences, 476(2243), 2020. (Cited on p. 6)

[5] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing
GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement
solvers. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC18 (Dallas, TX), Piscataway, NJ, USA, 2018, pages
47:1–47:11. IEEE. (Cited on p. 2)

[6] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. Investigating half
precision arithmetic to accelerate dense linear system solvers. In Proceedings of the 8th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17,
ACM Press, November 2017, pages 1–8. (Cited on p. 2)

[7] Nicholas J. Higham and Srikara Pranesh. Exploiting lower precision arithmetic in solving
symmetric positive definite linear systems and least squares problems. SIAM Journal on
Scientific Computing, 43(1):A258–A277, 2021. (Cited on p. 5)

[8] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix into
half precision, with an application to solving linear systems. SIAM Journal on Scientific
Computing, 41(4):A2536–A2551, 2019. (Cited on pp. 1, 3, 4, 5)

[9] James Hook, Jennifer Pestana, Françoise Tisseur, and Jonathan Hogg. Max-balanced
Hungarian scalings. SIAM Journal on Matrix Analysis and Applications, 40(1):320–346,
2019. (Cited on p. 4)

[10] Philip A. Knight, Daniel Ruiz, and Bora Uçar. A symmetry preserving algorithm for
matrix scaling. SIAM Journal on Matrix Analysis and Applications, 35(3):931–955, 2014.
(Cited on p. 4)

[11] Torbjörn Larsson. On scaling linear programs—some experimental results. Optimization,
27(4):355–373, 1993. (Cited on p. 4)

[12] Eda Oktay and Erin Carson. Multistage mixed precision iterative refinement. Numerical
Linear Algebra with Applications, 29(4), 2022. (Cited on p. 5)

[13] Jennifer Scott and Miroslav T̊oma. HSL MI28: An efficient and robust limited-memory
incomplete Cholesky factorization code. ACM Transactions on Mathematical Software, 40
(4):1–19, 2014. (Cited on p. 6)

[14] Jennifer Scott and Miroslav Tůma. Avoiding breakdown in incomplete factorizations in
low precision arithmetic. ACM Transactions on Mathematical Software, 50(2):1–25, 2024.
(Cited on p. 6)

[15] Jennifer Scott and Miroslav Tůma. Developing robust incomplete Cholesky factorizations
in half precision arithmetic. Numerical Algorithms, 2025. (Cited on p. 6)

8

https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1137/19m1298263
https://doi.org/10.1137/19m1298263
https://doi.org/10.1137/18m1229511
https://doi.org/10.1137/18m1229511
https://doi.org/10.1137/15m1024871
https://doi.org/10.1137/15m1024871
https://doi.org/10.1137/110825753
https://doi.org/10.1137/110825753
https://doi.org/10.1080/02331939308843895
https://doi.org/10.1002/nla.2434
https://doi.org/10.1145/2617555
https://doi.org/10.1145/2617555
https://doi.org/10.1145/3651155
https://doi.org/10.1145/3651155
https://doi.org/10.1007/s11075-025-02015-x
https://doi.org/10.1007/s11075-025-02015-x

	hpz19
	Traditional treatments
	Diagonal scaling then round
	Determine diagonal scaling matrices
	Discussion

	hipr21
	okca22
	sctu24
	sctu25
	hbtd20
	What does LAPACK do?

