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1 Introduction to Sylvester Equation

The Sylvester equation is a linear system of the form

AX +XB = C, A ∈ Cm×m, X, C ∈ Cm×n, B ∈ Cn×n. (1.1)

Sylvester [4] solves the homogeneous type of (1.1) in 1884. He solve the AX = XB
where A,X and B ∈ Rn×n by considering the n2 numbers of scalar linear equations.

The Sylvester equation also arises in eigenproblem. For instance in [1], they discover
that given a block triangular matrix

A =

[
A11 A12

0 A22

]
,

there exists Z =
[
I −X
0 I

]
, whose inverse is simply Z−1 = [ I X

0 I ] [1], that can block diago-
nalize A.

ZAZ−1 =

[
I −X
0 I

] [
A11 A22

0 A22

] [
I X
0 I

]
=

[
A11 A11X −XA22 + A12

0 A22

]
if X satisfies the Sylvester equation A11X −XA22 = −A12.

The Sylvester equation is solvable if and only if Λ(A) ∪ Λ(B) = ∅.

2 Bartels–Stewart Algorithm

The standard algorithm for solving the Sylvester equation is using the Bartels–Stewart
algorithm [2]. It computes the real Schur decompositions of A and B, A = USAU

∗ and
B = USBU

∗, where U and V are unitary and SA and SB are quasi–upper triangular.
Then the Sylvester equation (1.1) becomes

U∗AUU∗XV + U∗XV V ∗BV = U∗CV,

which, by writing Z = U∗XV and D = U∗CV , gives

SAZ + ZSB = D. (2.1)
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Equating jth columns in (2.1), we have

SAzj +

j∑
k=1

SB,kjzk = dj, j = 1 : n,

where zj and dj are the jth column of Z and D. We can further rewrite it as

(SA + SB,jjI)zj = dj −
j−1∑
k=1

SB,kjzk, j = 1 : n.

These n triangular systems can be solved to obtain the columns of Z can recover the
solution X by X = UZV ∗. Each triangular system is nonsingular if and only if the
Sylvester equation itself is nonsingular, i.e. Λ(A) ∪ Λ(B) = ∅.

We summarize this algorithm in Algorithm 1

Algorithm 1. Bartels-Stewart algorithm for solving Sylvester equation

Input: Coefficient matrices A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n.
Output: X ∈ Cm×n that solves AX +XB = C.
1: Compute Schur decompositions A = USAU

∗, and B = V SBV
∗.

The algorithm can test the condition Λ(A) ∪ Λ(B) = ∅ here.
2: Compute D = U∗CV .
3: Set Z = [ ].
4: for j = 1 : n do
5: Solve zj for the linear system

(SA + SB,jjI)zj = dj −
j−1∑
k=1

SB,kjzk.

6: Form Z = [Z, zj].
7: end for
8: Compute X = UZV ∗.

Algorithm 1 costs about 25(m3 + n3) + 3(m2n+mn2).
Since the algorithm is based on unitary transformations, it is numerically stable in

sense that the computed X̂ satisfies

∥AX̂ + X̂B − C∥F ≤ f(m,n)u(∥A∥F + ∥B∥F)∥X̂∥F, (2.2)

where f(m,n) is a modest function in m and n [3, sec. 16.1].

2.1 Instability

It is important that (2.2) does not means Algorithm 1 is backward stable. Since a small
residual, in this case, does not implies a small backward error defined as

η := min
{
∥[∆A/∥A∥F, ∆B/∥B∥F, ∆C/∥C∥F]∥F : (A+∆A)X̂ + X̂(B +∆B) = C +∆C

}
.
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See [3, sec. 16.2]. Ideally, we should result in

∥AX̂ + X̂B − C∥F ≤ f(m,n)u∥C∥F,

which indicates the numerical method is backward stable.

Example 2.1 ([3, p. 311]). The following example shows when the solution X̂ achieves
a small residue but not a small relative error η. Let

A =

[
1 −1
1 −1

]
, B = A− α

[
1 + α 0
0 1

]
,

where α is a small constant. Let vec(C) be the singular vector corresponding to the
smallest singular value of (I ⊗A−BT ⊗ I). Figure 1 reports the relative backward error
and the relative residue defined as

Eη :=
∥AX̂ + X̂B − C∥F

∥C∥F
, ERes :=

∥AX̂ + X̂B − C∥F
(∥A∥F + ∥B∥F)∥X̂∥F

,

respectively, for different α. We observe that for different size of α, the residue error ERes

remains small. However, the backward error Eη can blow up to 109.
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Figure 1: Behavior of Eη and ERes against different α. u = 2−53 is the unit roundoff of
double precision. The working precision is double precision.

Equally effective examples are easily generated using random, ill–conditioned A and
B.

Example 2.2. Changing the working precision to high precision can save some digits,
but not much. If we perform Example 2.1 at quadruple precision, then Eη for α = 10−8

reduces from 1010 to 100, which is still large.
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Figure 2: Behavior of Eη and ERes against different α. u = 2−53 is the unit roundoff of
double precision. The working precision is quadruple precision.

3 Implementation in MATLAB

Listing 1 shows the MATLAB implementation of the Bartels–Stewart algorithm.

function X = zb_sylv( A, B, C)

%ZB_SYLV - Solving the Sylvester equation

[mA,nA] = size( A );

[mB,nB] = size( B );

[mC,nC] = size( C );

if ( mA~=mC ) || ( mB~=nC )

error("Right-hand side matrix is inconsistent" + ...

"with coefficient matrices.");

end

if ( mA~=nA ) || ( mB~=nB )

error("Coefficent matrices are not square.");

end

% Schur decomposition

[U,SA] = schur( A,'complex' );

[V,SB] = schur( B,'complex' );

% Compute the new right-hand side matrix

D = U'*C*V;
Z = zeros( mC,nC );

I = eye( mA,nA );

% Solve nC triangular linear system

Z( :,1 ) = ( SA + SB( 1,1 )*I )\D( :,1 );

for j = 2:nC

sum1 = Z( :,1:j-1 ) * SB( 1:j-1,j );

rhsj = D( :,j ) - sum1;

Z( :,j ) = ( SA + SB( j,j )*I )\rhsj;
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end

% Recover the solution

X = U*Z*V';
end

Listing 1: MATLAB implementation of Algorithm 1.

4 Discussion

After carefully study the mixed-precision version of Bartles-Stewart algorithm, it seems
not possible to compute a backward stable solution to the Sylvester equation by using a
higher precision.

Higham [3] mentioned the size of a large Eη is due to the solution X̂ is ill-conditioned.
Then, the question remained is:

What are the necessary and sufficient conditions for a Sylvester equation to
have a backward stable solution?
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