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1 Introduction to Sylvester Equation
The Sylvester equation is a linear system of the form
AX + XB =C, AeC™™, X,CeC™", BeC"™". (1.1)

Sylvester [4] solves the homogeneous type of (1.1) in 1884. He solve the AX = XB
where A, X and B € R™" by considering the n* numbers of scalar linear equations.

The Sylvester equation also arises in eigenproblem. For instance in [1], they discover
that given a block triangular matrix
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there exists Z = [ 7], whose inverse is simply Z ~" = [ X] [1], that can block diago-
nalize A.
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if X satisfies the Sylvester equation A;; X — X Aqy = —Aj,.
The Sylvester equation is solvable if and only if A(A) U A(B) = 0.

2 Bartels—Stewart Algorithm

The standard algorithm for solving the Sylvester equation is using the Bartels—Stewart
algorithm [2]. It computes the real Schur decompositions of A and B, A = US,U" and
B = USgU", where U and V are unitary and S, and Sy are quasi-upper triangular.
Then the Sylvester equation (1.1) becomes

U'AUUXV + U XVV*BV =U*CV,
which, by writing Z = U*XV and D = U*CV/, gives

SuZ+ ZSp = D. (2.1)
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Equating jth columns in (2.1), we have

J
SAZj+ZSB,ijk:dj7 j:1:n,

k=1

where z; and d; are the jth column of Z and D. We can further rewrite it as

(SA + SB,]]I)Z] = dj — ZSBJ?J'ZIC’ ] =1:n.

These n triangular systems can be solved to obtain the columns of Z can recover the
solution X by X = UZV™. Each triangular system is nonsingular if and only if the
Sylvester equation itself is nonsingular, i.e. A(A) U A(B) = 0.

We summarize this algorithm in Algorithm 1

Algorithm 1. Bartels-Stewart algorithm for solving Sylvester equation

Input: Coefficient matrices A € C™*™, B € C"*" and C' € C™*".
Output: X € C™*" that solves AX + XB = C.

1: Compute Schur decompositions A = US,U", and B = VSgV".
The algorithm can test the condition A(A) U A(B) = () here.
Compute D = U*CV.

Set Z =[].
for j=1:ndo
Solve z; for the linear system

j—1
(Sa+Spyil)z = dj =) Sprjz

6: Form Z = [Z, ).

7: end for

8: Compute X =UZV".

Algorithm 1 costs about 25(m® 4 n®) + 3(m*n + mn?).
Since the algorithm is based on unitary transformations, it is numerically stable in
sense that the computed X satisfies

JAR + KB — Clle < fm n)u(lAlle + [ Ble)| X s, (2:2)

where f(m,n) is a modest function in m and n [3, sec. 16.1].

2.1 Instability

It is important that (2.2) does not means Algorithm 1 is backward stable. Since a small
residual, in this case, does not implies a small backward error defined as

ni=min { [[AA/ || Alle, AB/|[Blle, AC/|Clll : (A+ AA)X + X (B + AB) = C + AC}.



See [3, sec. 16.2]. Ideally, we should result in
IAX + XB — Cllp < f(m,n)ul|Cl,
which indicates the numerical method is backward stable.

Example 2.1 ([3, p. 311]). The following example shows when the solution X achieves
a small residue but not a small relative error 7. Let

|1 =1 A 1+a 0
A_L _J, B A a{ ' 1],

where a is a small constant. Let vec(C') be the singular vector corresponding to the
smallest singular value of (I ® A — B” @ I). Figure 1 reports the relative backward error
and the relative residue defined as

o |AX + XB — C||p | AX + XB - C|lg
— ) Res -— o )
! Il (I1Alle + [ Blle) | X [

respectively, for different a. We observe that for different size of «, the residue error £
remains small. However, the backward error &, can blow up to 10°.
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Figure 1: Behavior of &, and &ges against different a. u = 27 is the unit roundoff of
double precision. The working precision is double precision.

Equally effective examples are easily generated using random, ill-conditioned A and
B.

Example 2.2. Changing the working precision to high precision can save some digits,
but not much. If we perform Example 2.1 at quadruple precision, then &, for a = 107°
reduces from 10" to 10°, which is still large.
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Figure 2: Behavior of &, and £g. against different a. u = 27" is the unit roundoff of

double precision. The working precision is quadruple precision.

3 Implementation in MATLAB

Listing 1 shows the MATLAB implementation of the Bartels—Stewart algorithm.

function X = zb_sylv( A, B, C)
%ZB_SYLV - Solving the Sylvester equation

[mA,nA] = size( A );
[mB,nB] = size( B );
[mC,nC] = size( C );

if ( mA™=mC ) || ( mB”=nC )
error ("Right-hand side matrix is inconsistent" + ...
"with coefficient matrices.");
end
if ( mA™=nA ) || ( mB™=nB )
error("Coefficent matrices are not square.");
end
% Schur decomposition
[U,SA] = schur( A, 'complex' );
[V,SB] = schur( B, 'complex' );
% Compute the new right-hand side matrix
D = U'*CxV;
zeros( mC,nC );
I = eye( mA,nA );
% Solve nC triangular linear system
Z( :,1 ) = (8A + SB( 1,1 )*I )\D( :,1 );
for j = 2:nC
suml = Z( :,1:j-1 ) * SB( 1:j-1,j );
rhsj = D( :,j ) - suml;
Z( :,j ) = (SA + SB( j,j )*I )\rhsj;

N
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end

% Recover the solution
X = U*xZxV';

end

Listing 1: MATLAB implementation of Algorithm 1.

4 Discussion

After carefully study the mixed-precision version of Bartles-Stewart algorithm, it seems
not possible to compute a backward stable solution to the Sylvester equation by using a
higher precision.

Higham [3] mentioned the size of a large &, is due to the solution X is ill-conditioned.
Then, the question remained is:

What are the necessary and sufficient conditions for a Sylvester equation to
have a backward stable solution?
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